質問をすることでしか得られない、回答やアドバイスがある。

15分調べてもわからないことは、質問しよう!

新規登録して質問してみよう
ただいま回答率
87.20%
CUDA

CUDAは並列計算プラットフォームであり、Nvidia GPU(Graphics Processing Units)向けのプログラミングモデルです。CUDAは様々なプログラミング言語、ライブラリ、APIを通してNvidiaにインターフェイスを提供します。

Keras

Kerasは、TheanoやTensorFlow/CNTK対応のラッパーライブラリです。DeepLearningの数学的部分を短いコードでネットワークとして表現することが可能。DeepLearningの最新手法を迅速に試すことができます。

深層学習

深層学習は、多数のレイヤのニューラルネットワークによる機械学習手法。人工知能研究の一つでディープラーニングとも呼ばれています。コンピューター自体がデータの潜在的な特徴を汲み取り、効率的で的確な判断を実現することができます。

Python

Pythonは、コードの読みやすさが特徴的なプログラミング言語の1つです。 強い型付け、動的型付けに対応しており、後方互換性がないバージョン2系とバージョン3系が使用されています。 商用製品の開発にも無料で使用でき、OSだけでなく仮想環境にも対応。Unicodeによる文字列操作をサポートしているため、日本語処理も標準で可能です。

解決済

【python】想定外のメッセージが発生し混乱しております。【Tensorflow】

Yoshiki0208
Yoshiki0208

総合スコア1

CUDA

CUDAは並列計算プラットフォームであり、Nvidia GPU(Graphics Processing Units)向けのプログラミングモデルです。CUDAは様々なプログラミング言語、ライブラリ、APIを通してNvidiaにインターフェイスを提供します。

Keras

Kerasは、TheanoやTensorFlow/CNTK対応のラッパーライブラリです。DeepLearningの数学的部分を短いコードでネットワークとして表現することが可能。DeepLearningの最新手法を迅速に試すことができます。

深層学習

深層学習は、多数のレイヤのニューラルネットワークによる機械学習手法。人工知能研究の一つでディープラーニングとも呼ばれています。コンピューター自体がデータの潜在的な特徴を汲み取り、効率的で的確な判断を実現することができます。

Python

Pythonは、コードの読みやすさが特徴的なプログラミング言語の1つです。 強い型付け、動的型付けに対応しており、後方互換性がないバージョン2系とバージョン3系が使用されています。 商用製品の開発にも無料で使用でき、OSだけでなく仮想環境にも対応。Unicodeによる文字列操作をサポートしているため、日本語処理も標準で可能です。

1回答

0評価

0クリップ

413閲覧

投稿2021/12/15 14:46

初心者の質問となります。ご容赦ください。

今回、趣味で初めてAIのプログラミングを作成しようと思い、とあるサイトを拝見しながら進めておりました。

そこで、以下のようなメッセージが発生し、混乱しております。

C:\Users\コンピュータ名\Documents\K>python stock_ai.py
2021-12-15 21:50:07.418432: I tensorflow/core/platform/cpu_feature_guard.cc:151] This TensorFlow binary is optimized with oneAPI Deep Neural Network Library (oneDNN) to use the following CPU instructions in performance-critical operations: AVX AVX2
To enable them in other operations, rebuild TensorFlow with the appropriate compiler flags.
2021-12-15 21:50:08.902574: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1525] Created device /job:localhost/replica:0/task:0/device:GPU:0 with 2151 MB memory: -> device: 0, name: NVIDIA GeForce GTX 1650, pci bus id: 0000:01:00.0, compute capability: 7.5
Traceback (most recent call last):
File "stock_ai.py", line 51, in <module>
optimizer=optimizers.Adam(lr=1e-4),
AttributeError: module 'keras.optimizers' has no attribute 'Adam'

該当のソースコード

from keras import layers
from keras import models
from keras import optimizers
from keras.callbacks import ModelCheckpoint
from keras.preprocessing.image import ImageDataGenerator
import matplotlib.pyplot as plt
import os
import math

data_dir = 'data/chart' #データフォルダの名前
base_dir = "data/" #ログ出力用
def_batch_size = 1 #バッチサイズ

def weight(classes_name, dir_name):
data_element_num = {}
max_buf = 0
for class_name in classes_name:
class_dir = dir_name + os.sep + class_name
files = os.listdir(class_dir)
data_element_num[class_name] = len(files)
if max_buf < len(files):
max_buf = len(files)
weights = {}
count = 0
for class_name in classes_name:
weights[count] = round(float(math.pow(data_element_num[class_name]/max_buf, -1)), 2)
count = count + 1
return weights

model = models.Sequential()
model.add(layers.Conv2D(32, (3, 3), activation='relu',
input_shape=(256, 256, 1)))
model.add(layers.MaxPooling2D((2, 2)))
model.add(layers.Conv2D(64, (3, 3), activation='relu'))
model.add(layers.Conv2D(128, (3, 3), activation='relu'))
model.add(layers.MaxPooling2D((2, 2)))
model.add(layers.Dropout(0.5))
model.add(layers.Conv2D(256, (3, 3), activation='relu'))
model.add(layers.Conv2D(512, (3, 3), activation='relu'))
model.add(layers.MaxPooling2D((2, 2)))
model.add(layers.Dropout(0.5))
model.add(layers.Conv2D(512, (3, 3), activation='relu'))
model.add(layers.Flatten())
model.add(layers.Dense(512, activation='relu'))
model.add(layers.Dropout(0.5))
model.add(layers.Dense(1, activation='sigmoid'))

model.compile(loss='binary_crossentropy',
optimizer=optimizers.Adam(lr=1e-4),
metrics=['acc'])

datagen = ImageDataGenerator(validation_split=0.3, rescale=1./255)

train_generator = datagen.flow_from_directory(
data_dir,
batch_size=def_batch_size,
class_mode='binary',
target_size=(256, 256),
color_mode='grayscale',
subset='training')

validation_generator = datagen.flow_from_directory(
data_dir,
batch_size=def_batch_size,
class_mode='binary',
target_size=(256, 256),
color_mode='grayscale',
subset='validation')

for data_batch, labels_batch in train_generator:
print('data batch shape:', data_batch.shape)
print('labels batch shape:', labels_batch.shape)
break

fpath = base_dir + 'chart.{epoch:02d}.h5'
modelCheckpoint = ModelCheckpoint(filepath = fpath,
monitor='val_loss',
verbose=1,
save_best_only=True,
save_weights_only=False,
mode='min',
save_freq='epoch')

class_weights = weight(classes_name = ['down', 'up'], dir_name = data_dir)
print('class weight:', class_weights)

history = model.fit(
train_generator,
steps_per_epoch=train_generator.samples // def_batch_size,
validation_data = validation_generator,
epochs = 100,
validation_steps=validation_generator.samples // def_batch_size,
class_weight=class_weights,
callbacks=[modelCheckpoint])

acc = history.history['acc']
val_acc = history.history['val_acc']
loss = history.history['loss']
val_loss = history.history['val_loss']

epochs = range(len(acc))

fig = plt.figure()
plt.plot(epochs, acc, 'bo', label='Training acc')
plt.plot(epochs, val_acc, 'b', label='Validation acc')
plt.title('Training and validation accuracy')
plt.legend()
plt.savefig(base_dir + 'accuracy.png')
plt.close()

fig = plt.figure()
plt.plot(epochs, loss, 'bo', label='Training loss')
plt.plot(epochs, val_loss, 'b', label='Validation loss')
plt.title('Training and validation loss')
plt.legend()
plt.savefig(base_dir + 'loss.png')
plt.close()

試したこと

同様のメッセージが出ているかの検索
→解決には至らず

補足情報(FW/ツールのバージョンなど)

Winows 11
python --version: 3.8.6
CUDA 11.5
TensorFlow 2.7.0
NVIDIA グラフィックスドライバー 497.09

稚拙な分になり申し訳ないです。
よろしくお願いいたします。

良い質問の評価を上げる

以下のような質問は評価を上げましょう

  • 質問内容が明確
  • 自分も答えを知りたい
  • 質問者以外のユーザにも役立つ

評価が高い質問は、TOPページの「注目」タブのフィードに表示されやすくなります。

気になる質問をクリップする

クリップした質問は、後からいつでもマイページで確認できます。

またクリップした質問に回答があった際、通知やメールを受け取ることができます。

teratailでは下記のような質問を「具体的に困っていることがない質問」、「サイトポリシーに違反する質問」と定義し、推奨していません。

  • プログラミングに関係のない質問
  • やってほしいことだけを記載した丸投げの質問
  • 問題・課題が含まれていない質問
  • 意図的に内容が抹消された質問
  • 過去に投稿した質問と同じ内容の質問
  • 広告と受け取られるような投稿

評価を下げると、トップページの「アクティブ」「注目」タブのフィードに表示されにくくなります。

まだ回答がついていません

会員登録して回答してみよう

15分調べてもわからないことは
teratailで質問しよう!

ただいまの回答率
87.20%

質問をまとめることで
思考を整理して素早く解決

テンプレート機能で
簡単に質問をまとめる

質問する

関連した質問

同じタグがついた質問を見る

CUDA

CUDAは並列計算プラットフォームであり、Nvidia GPU(Graphics Processing Units)向けのプログラミングモデルです。CUDAは様々なプログラミング言語、ライブラリ、APIを通してNvidiaにインターフェイスを提供します。

Keras

Kerasは、TheanoやTensorFlow/CNTK対応のラッパーライブラリです。DeepLearningの数学的部分を短いコードでネットワークとして表現することが可能。DeepLearningの最新手法を迅速に試すことができます。

深層学習

深層学習は、多数のレイヤのニューラルネットワークによる機械学習手法。人工知能研究の一つでディープラーニングとも呼ばれています。コンピューター自体がデータの潜在的な特徴を汲み取り、効率的で的確な判断を実現することができます。

Python

Pythonは、コードの読みやすさが特徴的なプログラミング言語の1つです。 強い型付け、動的型付けに対応しており、後方互換性がないバージョン2系とバージョン3系が使用されています。 商用製品の開発にも無料で使用でき、OSだけでなく仮想環境にも対応。Unicodeによる文字列操作をサポートしているため、日本語処理も標準で可能です。