kerasを用いて、Unetを作成しています。
構造は下記のような感じだと思いますが、参考にしているコードがUnetじゃないのではないかと疑っています。
自分の認識だと、各層のユニット数が、入力層から徐々に少なくなって、中間層の真ん中あたりで最小になって、出力層に向かって増えていくイメージでした。
しかし、参考にしているコードは、中間層の真ん中あたりで、ユニット数が最大になっています。なぜでしょうか?
Python
1def unet(pretrained_weights = None,input_size = (256,256,1)): 2 inputs = Input(input_size) 3 conv1 = Conv2D(64, 3, activation = 'relu', padding = 'same', kernel_initializer = 'he_normal')(inputs) 4 conv1 = Conv2D(64, 3, activation = 'relu', padding = 'same', kernel_initializer = 'he_normal')(conv1) 5 pool1 = MaxPooling2D(pool_size=(2, 2))(conv1) 6 conv2 = Conv2D(128, 3, activation = 'relu', padding = 'same', kernel_initializer = 'he_normal')(pool1) 7 conv2 = Conv2D(128, 3, activation = 'relu', padding = 'same', kernel_initializer = 'he_normal')(conv2) 8 pool2 = MaxPooling2D(pool_size=(2, 2))(conv2) 9 conv3 = Conv2D(256, 3, activation = 'relu', padding = 'same', kernel_initializer = 'he_normal')(pool2) 10 conv3 = Conv2D(256, 3, activation = 'relu', padding = 'same', kernel_initializer = 'he_normal')(conv3) 11 pool3 = MaxPooling2D(pool_size=(2, 2))(conv3) 12 conv4 = Conv2D(512, 3, activation = 'relu', padding = 'same', kernel_initializer = 'he_normal')(pool3) 13 conv4 = Conv2D(512, 3, activation = 'relu', padding = 'same', kernel_initializer = 'he_normal')(conv4) 14 drop4 = Dropout(0.5)(conv4) 15 pool4 = MaxPooling2D(pool_size=(2, 2))(drop4) 16 17 conv5 = Conv2D(1024, 3, activation = 'relu', padding = 'same', kernel_initializer = 'he_normal')(pool4) 18 conv5 = Conv2D(1024, 3, activation = 'relu', padding = 'same', kernel_initializer = 'he_normal')(conv5) 19 drop5 = Dropout(0.5)(conv5) 20 21 up6 = Conv2D(512, 2, activation = 'relu', padding = 'same', kernel_initializer = 'he_normal')(UpSampling2D(size = (2,2))(drop5)) 22 merge6 = concatenate([drop4,up6], axis = 3) 23 conv6 = Conv2D(512, 3, activation = 'relu', padding = 'same', kernel_initializer = 'he_normal')(merge6) 24 conv6 = Conv2D(512, 3, activation = 'relu', padding = 'same', kernel_initializer = 'he_normal')(conv6) 25 26 up7 = Conv2D(256, 2, activation = 'relu', padding = 'same', kernel_initializer = 'he_normal')(UpSampling2D(size = (2,2))(conv6)) 27 merge7 = concatenate([conv3,up7], axis = 3) 28 conv7 = Conv2D(256, 3, activation = 'relu', padding = 'same', kernel_initializer = 'he_normal')(merge7) 29 conv7 = Conv2D(256, 3, activation = 'relu', padding = 'same', kernel_initializer = 'he_normal')(conv7) 30 31 up8 = Conv2D(128, 2, activation = 'relu', padding = 'same', kernel_initializer = 'he_normal')(UpSampling2D(size = (2,2))(conv7)) 32 merge8 = concatenate([conv2,up8], axis = 3) 33 conv8 = Conv2D(128, 3, activation = 'relu', padding = 'same', kernel_initializer = 'he_normal')(merge8) 34 conv8 = Conv2D(128, 3, activation = 'relu', padding = 'same', kernel_initializer = 'he_normal')(conv8) 35 36 up9 = Conv2D(64, 2, activation = 'relu', padding = 'same', kernel_initializer = 'he_normal')(UpSampling2D(size = (2,2))(conv8)) 37 merge9 = concatenate([conv1,up9], axis = 3) 38 conv9 = Conv2D(64, 3, activation = 'relu', padding = 'same', kernel_initializer = 'he_normal')(merge9) 39 conv9 = Conv2D(64, 3, activation = 'relu', padding = 'same', kernel_initializer = 'he_normal')(conv9) 40 conv9 = Conv2D(2, 3, activation = 'relu', padding = 'same', kernel_initializer = 'he_normal')(conv9) 41 conv10 = Conv2D(1, 1, activation = 'sigmoid')(conv9) 42 43 model = Model(input = inputs, output = conv10) 44 45 model.compile(optimizer = Adam(lr = 1e-4), loss = 'binary_crossentropy', metrics = ['accuracy']) 46 47 #model.summary() 48 49 if(pretrained_weights): 50 model.load_weights(pretrained_weights) 51 52 return model
以上、よろしくお願いいたします。
参照元URL

回答1件
あなたの回答
tips
プレビュー
バッドをするには、ログインかつ
こちらの条件を満たす必要があります。
2020/01/30 00:13