前提・実現したいこと
https://teratail.com/questions/102908の質問内容とほぼ被ってますが質問させていただきます。
2種類の画像分類を行うようなモデルを作成しました。その際、Resnet-50を使った転移学習によってモデルを構築しました。このモデルの中間層で行われている特徴量計算を可視化したいと考え、Grad-camを実装することとしました。
発生している問題・エラーメッセージ
Traceback (most recent call last): File "mygrad_cam.py", line 131, in <module> cam, heatmap = grad_cam(model, preprocessed_input, predicted_class, "activation_48") File "mygrad_cam.py", line 92, in grad_cam output_shape = target_category_loss_output_shape)) File "C:\Users\Public.MYCOMPUTER\Anaconda3\envs\tensor_copy\lib\site-packages\tensorflow\python\training\checkpointable\base.py", line 474, in _method_wrapper method(self, *args, **kwargs) File "C:\Users\Public.MYCOMPUTER\Anaconda3\envs\tensor_copy\lib\site-packages\tensorflow\python\keras\engine\sequential.py", line 140, in add 'Found: ' + str(layer)) TypeError: The added layer must be an instance of class Layer. Found: <keras.layers.core.Lambda object at 0x000002445C0646A0>
該当のソースコード
Python
1from keras.preprocessing import image 2from keras.layers.core import Lambda 3from tensorflow.python.keras.models import Sequential ,load_model 4from tensorflow.python.framework import ops 5import keras.backend as K 6import tensorflow as tf 7import numpy as np 8import keras 9import sys 10import cv2 11 12def target_category_loss(x, category_index, nb_classes): 13 return tf.multiply(x, K.one_hot([category_index], nb_classes)) 14 15def target_category_loss_output_shape(input_shape): 16 return input_shape 17 18def normalize(x): 19 # utility function to normalize a tensor by its L2 norm 20 return x / (K.sqrt(K.mean(K.square(x))) + 1e-5) 21 22def load_image(path): 23 img_path = path 24 img = image.load_img(img_path, target_size=(224,224)) 25 x = image.img_to_array(img) 26 x = np.expand_dims(x, axis=0) 27 return x 28 29def register_gradient(): 30 if "GuidedBackProp" not in ops._gradient_registry._registry: 31 @ops.RegisterGradient("GuidedBackProp") 32 def _GuidedBackProp(op, grad): 33 dtype = op.inputs[0].dtype 34 return grad * tf.cast(grad > 0., dtype) * \ 35 tf.cast(op.inputs[0] > 0., dtype) 36 37def compile_saliency_function(model, activation_layer='conv2d_3'): 38 input_img = model.input 39 layer_dict = dict([(layer.name, layer) for layer in model.layers[1:]]) 40 layer_output = layer_dict[activation_layer].output 41 max_output = K.max(layer_output, axis=3) 42 saliency = K.gradients(K.sum(max_output), input_img)[0] 43 return K.function([input_img, K.learning_phase()], [saliency]) 44 45def modify_backprop(model, name): 46 g = tf.get_default_graph() 47 with g.gradient_override_map({'Relu': name}): 48 49 # get layers that have an activation 50 layer_dict = [layer for layer in model.layers[1:] 51 if hasattr(layer, 'activation')] 52 53 # replace relu activation 54 for layer in layer_dict: 55 if layer.activation == keras.activations.relu: 56 layer.activation = tf.nn.relu 57 58 # re-instanciate a new model 59 new_model = model 60 return new_model 61 62def deprocess_image(x): 63 ''' 64 Same normalization as in: 65 https://github.com/fchollet/keras/blob/master/examples/conv_filter_visualization.py 66 ''' 67 if np.ndim(x) > 3: 68 x = np.squeeze(x) 69 # normalize tensor: center on 0., ensure std is 0.1 70 x -= x.mean() 71 x /= (x.std() + 1e-5) 72 x *= 0.1 73 74 # clip to [0, 1] 75 x += 0.5 76 x = np.clip(x, 0, 1) 77 78 # convert to RGB array 79 x *= 255 80 if K.image_dim_ordering() == 'th': 81 x = x.transpose((1, 2, 0)) 82 x = np.clip(x, 0, 255).astype('uint8') 83 return x 84 85def grad_cam(input_model, image, category_index, layer_name): 86 model = Sequential() 87 model.add(input_model) 88 89 nb_classes = 2 90 target_layer = lambda x: target_category_loss(x, category_index, nb_classes) 91 model.add(Lambda(target_layer, 92 output_shape = target_category_loss_output_shape)) 93 94 loss = K.sum(model.layers[-1].output) 95 conv_output = [l for l in model.layers[0].layers if l.name == layer_name][0].output 96 grads = normalize(K.gradients(loss, conv_output)[0]) 97 gradient_function = K.function([model.layers[0].input], [conv_output, grads]) 98 99 output, grads_val = gradient_function([image]) 100 output, grads_val = output[0, :], grads_val[0, :, :, :] 101 102 weights = np.mean(grads_val, axis = (0, 1)) 103 cam = np.ones(output.shape[0 : 2], dtype = np.float32) 104 105 for i, w in enumerate(weights): 106 cam += w * output[:, :, i] 107 108 cam = cv2.resize(cam, (64, 64)) 109 cam = np.maximum(cam, 0) 110 heatmap = cam / np.max(cam) 111 112 #Return to BGR [0..255] from the preprocessed image 113 image = image[0, :] 114 image -= np.min(image) 115 image = np.minimum(image, 255) 116 117 cam = cv2.applyColorMap(np.uint8(255*heatmap), cv2.COLORMAP_JET) 118 cam = np.float32(cam) + np.float32(image) 119 cam = 255 * cam / np.max(cam) 120 return np.uint8(cam), heatmap 121 122# 判定画像の読み込み 123preprocessed_input = load_image('F6.jpg') 124 125model = load_model('allnet.h5') 126model.summary() 127 128predictions = model.predict(preprocessed_input) 129 130predicted_class = np.argmax(predictions) 131cam, heatmap = grad_cam(model, preprocessed_input, predicted_class, "activation_48") 132cv2.imwrite("gradcam.jpg", cam) 133 134register_gradient() 135guided_model = modify_backprop(model, 'GuidedBackProp') 136saliency_fn = compile_saliency_function(guided_model) 137saliency = saliency_fn([preprocessed_input, 0]) 138gradcam = saliency[0] * heatmap[..., np.newaxis] 139cv2.imwrite("guided_gradcam.jpg", deprocess_image(gradcam))
試したこと
複数のサイトを参考にしながら色々と試してはみたのですが、どれを使ってもうまく実装することができませんでした。
ご教授のほどよろしくお願いいたします。
補足情報(FW/ツールのバージョンなど)
実行環境
Window10
AnacondaNavigator
Keras2.2.4
Tensorflow1.12.0
バッドをするには、ログインかつ
こちらの条件を満たす必要があります。