Windowsからバーチャルボックスに、centos7をインストールしました。
以下のコマンドでpythonをインストールしました。
yum clean all yum -y update yum -y install gcc make unzip zlib-devel libffi-devel bzip2-devel openssl-devel ncurses-devel sqlite-devel readline-devel tk-devel gdbm-devel libuuid-devel xz-devel curl -O https://www.python.org/ftp/python/3.7.14/Python-3.7.14.tgz tar xf Python-3.7.14.tgz cd Python-3.7.14 # Python3.7のビルド ./configure --enable-optimizations make # Python3.7のインストール make altinstall ln -s /usr/local/bin/python3.7 /usr/bin/python3 ln -s /usr/local/bin/pip3.7 /usr/bin/pip3
下記のようにpandasのパスを通しました。
find /usr/ -name "pandas" -type d /usr/local/lib/python3.7/site-packages/pandas echo $PATH /usr/local/sbin:/usr/local/bin:/sbin:/bin:/usr/sbin:/usr/bin:/usr/local/lib/python3.7/site-packages/pandas:/usr/local/lib/python3.7/site-packages/numpy:/usr/local/lib/python3.7/site-packages/psycopg2:/root/bin:/usr/local/lib/python3.7/site-packages/psycopg2
・pandasなどは以下のように、インストールしました。
pip install -r requirements.txt
以下のコードから[python3 database_te.py operation_1_1.ini]を実行します。
■フォルダ構成
・/home/todashinya/pyproglam
database_te.py
・/home/todashinya/pyproglam/conf
operation_1_1.ini
・/home/todashinya/pyproglam/log
・database_te.py # -*- coding: utf-8 -*- import pandas as pd import sys import os import psycopg2 from psycopg2.extras import execute_values from psycopg2.extras import DictCursor import configparser import datetime import traceback import logging cdt = datetime.datetime.now() handler = logging.FileHandler('/home/toda/log/mylog.log') logger.addHandler(handler) fmt = logging.Formatter('%(asctime)s %(message)s') handler.setFormatter(fmt) DBNAME = "db_test" HOST = "localhost" PORT = "5432" USER = "postgres" PASSWORD = "postjike" logger.debug("DB_NAME:"+str(DBNAME)) logger.debug("DB_HOST:"+str(HOST)) logger.debug("DB_PORT:"+str(PORT)) logger.debug("DB_USER:"+str(USER)) logger.debug("DB_PASSWORD:"+str(PASSWORD)) class operation: input_num = 0 add_num = 0 table_name = "" pattarn_id = 0 before_minutes = "" idf = [] adf = [] model = "" predict = "" input_tau_p = 1 input_tau_f = 1 input_threshold = 1000.0 input_threshold_tau = 1 input_cluster_num = 1 input_w = 1.0 input_lower_limit = 2 input_upper_limit = 400 input_abnormal_flag = False input_freq = "60T" input_input_feature = "offset_latest" input_type_predict = "diff" input_ns_tau_p = [1] input_n_tau_d = 1 input_n_twin_smooth_gp = 0 input_n_twin_smooth_coef = 30 input_reg_model = "MV_ReducedRankRegression_5_0.0_0.1" input_normalize_spatial_mesh = False input_rbf_params_solve = "ridge" input_rbf_params_cont_prior = False input_rbf_params_rbfloc_method = "weighted_kmeans" input_rbf_params_n_neighbors_distortion = 100 input_rbf_params_pow_distortion = 10 input_rbf_params_coeff_sigma_rbf = 0.2 input_rbf_params_gcv_mode = "diag" input_rbf_params_cc_sigma_coeff = 0.1 input_rbf_params_n_neighbors_rbf_sigmas = [15] input_rbf_params_alphas = [0.1] input_return_analytics = True input_update_learning_patterns = False def get_ini(self): try: con = configparser.ConfigParser() con.read(ifn, encoding='utf-8') self.input_num = int(con['PARAM']['input_num']) self.add_num = int(con['PARAM']['add_num']) self.return_analytics = con['PARAM']['return_analytics'] self.update_learning_patterns = con['PARAM']['update_learning_patterns'] self.table_name = con['TABLE']['table_name'] self.pattarn_id = con['TABLE']['pattarn_id'] self.before_minutes = con['TABLE']['before_minutes'] self.input_tau_p = int(con['PARAM']['tau_p']) self.input_tau_f = int(con['PARAM']['tau_f']) self.input_threshold = float(con['PARAM']['threshold']) self.input_threshold_tau = int(con['PARAM']['threshold_tau']) self.input_cluster_num = int(con['PARAM']['cluster_num']) self.input_w = float(con['PARAM']['w']) self.input_upper_limit = int(con['PARAM']['upper_limit']) self.input_lower_limit = int(con['PARAM']['lower_limit']) self.input_abnormal_flag = eval(con['PARAM']['abnormal_flag']) self.input_freq = con['PARAM']['freq'] self.input_input_feature = con['PARAM']['input_feature'] self.input_type_predict = con['PARAM']['type_predict'] self.input_ns_tau_p[0]=int(con['PARAM']['ns_tau_p']) self.input_n_tau_d = int(con['PARAM']['n_tau_d']) self.input_n_twin_smooth_gp = int(con['PARAM']['n_twin_smooth_gp']) self.input_n_twin_smooth_coef = int(con['PARAM']['n_twin_smooth_coef']) self.input_reg_model = con['PARAM']['reg_model'] self.input_normalize_spatial_mesh = eval(con['PARAM']['normalize_spatial_mesh']) self.input_rbf_params_solve = con['PARAM']['rbf_params_solve'] self.input_rbf_params_cont_prior = eval(con['PARAM']['rbf_params_cont_prior']) self.input_rbf_params_rbfloc_method = con['PARAM']['rbf_params_rbfloc_method'] self.input_rbf_params_n_neighbors_distortion = int(con['PARAM']['rbf_params_n_neighbors_distortion']) self.input_rbf_params_pow_distortion = int(con['PARAM']['rbf_params_pow_distortion']) self.input_rbf_params_coeff_sigma_rbf=float(con['PARAM']['rbf_params_coeff_sigma_rbf']) self.input_rbf_params_gcv_mode = con['PARAM']['rbf_params_gcv_mode'] self.input_rbf_params_cc_sigma_coeff = float(con['PARAM']['rbf_params_cc_sigma_coeff']) self.input_rbf_params_n_neighbors_rbf_sigmas[0]=int(con['PARAM']['rbf_params_n_neighbors_rbf_sigmas']) self.input_rbf_params_alphas[0]=float(con['PARAM']['rbf_params_alphas']) except Exception as e: logger.debug("設定ファイル取得失敗:" + ifn) sys.exit(1) return 0 def main(self): connflg=0 try: self.get_ini() connflg=1 with psycopg2.connect(user="postgres",password="postjike",host="localhost",port="5432",database="postgres") as conn: connflg=2 logger.debug('処理開始') # self.get_input_data(conn) logger.debug('処理終了') except Exception as e: if connflg==1: logger.debug('処理開始' +str(traceback.format_exc())) elif connflg==2: logger.debug('その他エラー' +str(traceback.format_exc())) logger.debug('処理終了') sys.exit(1) return 0 ifn=os.path.dirname(os.path.abspath(__file__))+'/conf/'+sys.argv[1] print(ifn) yd="" if len(sys.argv) == 3: yd=sys.argv[2] c=operation() c.main() ・operation_1_1.ini [PARAM] input_num=168 add_num=24 tau_p=10 tau_f=1 threshold=1000.0 threshold_tau=10 cluster_num=5 w=1.0 lower_limit=2 upper_limit=400 abnormal_flag=False freq=60T input_feature=offset_latest type_predict=diff ns_tau_p=5 n_tau_d=10 n_twin_smooth_gp=0 n_twin_smooth_coef=30 reg_model=MV_ReducedRankRegression_5_0.0_0.1 normalize_spatial_mesh=False rbf_params_solve=ridge rbf_params_cont_prior=False rbf_params_rbfloc_method=weighted_kmeans rbf_params_n_neighbors_distortion=100 rbf_params_pow_distortion=10 rbf_params_coeff_sigma_rbf=0.2 rbf_params_gcv_mode=diag rbf_params_cc_sigma_coeff=0.1 rbf_params_n_neighbors_rbf_sigmas=3 rbf_params_alphas=0.001 return_analytics = True update_learning_patterns = False [TABLE] table_name=output_data_1_1 pattarn_id=1 before_minutes=60 [LOG] log_level=DEBUG log_name=operation_1_1 ・requirements.txt pandas==0.25.3 numpy==1.17.4 scipy==1.3.3
以下のエラーになります。
Traceback (most recent call last):
File "database_te.py", line 2, in <module>
import pandas as pd
ModuleNotFoundError: No module named 'pandas'
PATHは通したはずですが、エラーを解消する方法を、お聞きしても
よろしいですか。
回答3件
あなたの回答
tips
プレビュー