質問をすることでしか得られない、回答やアドバイスがある。

15分調べてもわからないことは、質問しよう!

ただいまの
回答率

90.49%

  • Python

    12184questions

    Pythonは、コードの読みやすさが特徴的なプログラミング言語の1つです。 強い型付け、動的型付けに対応しており、後方互換性がないバージョン2系とバージョン3系が使用されています。 商用製品の開発にも無料で使用でき、OSだけでなく仮想環境にも対応。Unicodeによる文字列操作をサポートしているため、日本語処理も標準で可能です。

  • Python 3.x

    10195questions

    Python 3はPythonプログラミング言語の最新バージョンであり、2008年12月3日にリリースされました。

  • Python 2.7

    1468questions

    Python 2.7は2.xシリーズでは最後のメジャーバージョンです。Python3.1にある機能の多くが含まれています。

  • TensorFlow

    944questions

TensorFlowを用いた画像認識(CNN法)で用いる画像のサイズが分からない.

受付中

回答 1

投稿 編集

  • 評価
  • クリップ 0
  • VIEW 1,697
退会済みユーザー

退会済みユーザー

以下のコードでCNNを用いたニューラルネットワークを構築する際,データセットの画像サイズを統一しなければならないか知りたいです.
どなたか詳しい方教えて頂けませんでしょうか.

#!/usr/bin/env python
# -*- coding: utf-8 -*-
import sys
import cv2
import numpy as np
import tensorflow as tf
import tensorflow.python.platform

NUM_CLASSES = 12
IMAGE_SIZE = 28
IMAGE_PIXELS = IMAGE_SIZE*IMAGE_SIZE*3

flags = tf.app.flags
FLAGS = flags.FLAGS
flags.DEFINE_string('train', 'train.txt', 'File name of train data')
flags.DEFINE_string('test', 'test.txt', 'File name of train data')
flags.DEFINE_string('train_dir', '/tmp/data', 'Directory to put the training data.')
flags.DEFINE_integer('max_steps', 200, 'Number of steps to run trainer.')
flags.DEFINE_integer('batch_size', 10, 'Batch size'
                     'Must divide evenly into the dataset sizes.')
flags.DEFINE_float('learning_rate', 1e-4, 'Initial learning rate.')

def inference(images_placeholder, keep_prob):
    """ 予測モデルを作成する関数

    引数: 
      images_placeholder: 画像のplaceholder
      keep_prob: dropout率のplace_holder

    返り値:
      y_conv: 各クラスの確率(のようなもの)
    """
    # 重みを標準偏差0.1の正規分布で初期化
    def weight_variable(shape):
      initial = tf.truncated_normal(shape, stddev=0.1)
      return tf.Variable(initial)

    # バイアスを標準偏差0.1の正規分布で初期化
    def bias_variable(shape):
      initial = tf.constant(0.1, shape=shape)
      return tf.Variable(initial)

    # 畳み込み層の作成
    def conv2d(x, W):
      return tf.nn.conv2d(x, W, strides=[1, 1, 1, 1], padding='SAME')

    # プーリング層の作成
    def max_pool_2x2(x):
      return tf.nn.max_pool(x, ksize=[1, 2, 2, 1],
                            strides=[1, 2, 2, 1], padding='SAME')

    # 入力を28x28x3に変形
    x_image = tf.reshape(images_placeholder, [-1, 28, 28, 3])

    # 畳み込み層1の作成
    with tf.name_scope('conv1') as scope:
        W_conv1 = weight_variable([5, 5, 3, 32])
        b_conv1 = bias_variable([32])
        h_conv1 = tf.nn.relu(conv2d(x_image, W_conv1) + b_conv1)

    # プーリング層1の作成
    with tf.name_scope('pool1') as scope:
        h_pool1 = max_pool_2x2(h_conv1)

    # 畳み込み層2の作成
    with tf.name_scope('conv2') as scope:
        W_conv2 = weight_variable([5, 5, 32, 64])
        b_conv2 = bias_variable([64])
        h_conv2 = tf.nn.relu(conv2d(h_pool1, W_conv2) + b_conv2)

    # プーリング層2の作成
    with tf.name_scope('pool2') as scope:
        h_pool2 = max_pool_2x2(h_conv2)

    # 全結合層1の作成
    with tf.name_scope('fc1') as scope:
        W_fc1 = weight_variable([7*7*64, 1024])
        b_fc1 = bias_variable([1024])
        h_pool2_flat = tf.reshape(h_pool2, [-1, 7*7*64])
        h_fc1 = tf.nn.relu(tf.matmul(h_pool2_flat, W_fc1) + b_fc1)
        # dropoutの設定
        h_fc1_drop = tf.nn.dropout(h_fc1, keep_prob)

    # 全結合層2の作成
    with tf.name_scope('fc2') as scope:
        W_fc2 = weight_variable([1024, NUM_CLASSES])
        b_fc2 = bias_variable([NUM_CLASSES])

    # ソフトマックス関数による正規化
    with tf.name_scope('softmax') as scope:
        y_conv=tf.nn.softmax(tf.matmul(h_fc1_drop, W_fc2) + b_fc2)

    # 各ラベルの確率のようなものを返す
    return y_conv

def loss(logits, labels):
    """ lossを計算する関数

    引数:
      logits: ロジットのtensor, float - [batch_size, NUM_CLASSES]
      labels: ラベルのtensor, int32 - [batch_size, NUM_CLASSES]

    返り値:
      cross_entropy: 交差エントロピーのtensor, float

    """

    # 交差エントロピーの計算
    cross_entropy = -tf.reduce_sum(labels*tf.log(logits))
    # TensorBoardで表示するよう指定
    tf.scalar_summary("cross_entropy", cross_entropy)
    return cross_entropy

def training(loss, learning_rate):
    """ 訓練のOpを定義する関数

    引数:
      loss: 損失のtensor, loss()の結果
      learning_rate: 学習係数

    返り値:
      train_step: 訓練のOp

    """

    train_step = tf.train.AdamOptimizer(learning_rate).minimize(loss)
    return train_step

def accuracy(logits, labels):
    """ 正解率(accuracy)を計算する関数

    引数: 
      logits: inference()の結果
      labels: ラベルのtensor, int32 - [batch_size, NUM_CLASSES]

    返り値:
      accuracy: 正解率(float)

    """
    correct_prediction = tf.equal(tf.argmax(logits, 1), tf.argmax(labels, 1))
    accuracy = tf.reduce_mean(tf.cast(correct_prediction, "float"))
    tf.scalar_summary("accuracy", accuracy)
    return accuracy

if __name__ == '__main__':
    # ファイルを開く
    f = open(FLAGS.train, 'r')
    # データを入れる配列
    train_image = []
    train_label = []
    for line in f:
        # 改行を除いてスペース区切りにする
        line = line.rstrip()
        l = line.split()
        # データを読み込んで28x28に縮小
        img = cv2.imread(l[0])
        img = cv2.resize(img, (28, 28))
        # 一列にした後、0-1のfloat値にする
        train_image.append(img.flatten().astype(np.float32)/255.0)
        # ラベルを1-of-k方式で用意する
        tmp = np.zeros(NUM_CLASSES)
        tmp[int(l[1])] = 1
        train_label.append(tmp)
    # numpy形式に変換
    train_image = np.asarray(train_image)
    train_label = np.asarray(train_label)
    f.close()

    f = open(FLAGS.test, 'r')
    test_image = []
    test_label = []
    for line in f:
        line = line.rstrip()
        l = line.split()
        img = cv2.imread(l[0])
        img = cv2.resize(img, (28, 28))
        test_image.append(img.flatten().astype(np.float32)/255.0)
        tmp = np.zeros(NUM_CLASSES)
        tmp[int(l[1])] = 1
        test_label.append(tmp)
    test_image = np.asarray(test_image)
    test_label = np.asarray(test_label)
    f.close()

    with tf.Graph().as_default():
        # 画像を入れる仮のTensor
        images_placeholder = tf.placeholder("float", shape=(None, IMAGE_PIXELS))
        # ラベルを入れる仮のTensor
        labels_placeholder = tf.placeholder("float", shape=(None, NUM_CLASSES))
        # dropout率を入れる仮のTensor
        keep_prob = tf.placeholder("float")

        # inference()を呼び出してモデルを作る
        logits = inference(images_placeholder, keep_prob)
        # loss()を呼び出して損失を計算
        loss_value = loss(logits, labels_placeholder)
        # training()を呼び出して訓練
        train_op = training(loss_value, FLAGS.learning_rate)
        # 精度の計算
        acc = accuracy(logits, labels_placeholder)

        # 保存の準備
        saver = tf.train.Saver()
        # Sessionの作成
        sess = tf.Session()
        # 変数の初期化
        sess.run(tf.initialize_all_variables())
        # TensorBoardで表示する値の設定
        summary_op = tf.merge_all_summaries()
        summary_writer = tf.train.SummaryWriter(FLAGS.train_dir, sess.graph_def)

        # 訓練の実行
        for step in range(FLAGS.max_steps):
            for i in range(len(train_image)/FLAGS.batch_size):
                # batch_size分の画像に対して訓練の実行
                batch = FLAGS.batch_size*i
                # feed_dictでplaceholderに入れるデータを指定する
                sess.run(train_op, feed_dict={
                  images_placeholder: train_image[batch:batch+FLAGS.batch_size],
                  labels_placeholder: train_label[batch:batch+FLAGS.batch_size],
                  keep_prob: 0.5})

            # 1 step終わるたびに精度を計算する
            train_accuracy = sess.run(acc, feed_dict={
                images_placeholder: train_image,
                labels_placeholder: train_label,
                keep_prob: 1.0})
            print "step %d, training accuracy %g"%(step, train_accuracy)

            # 1 step終わるたびにTensorBoardに表示する値を追加する
            summary_str = sess.run(summary_op, feed_dict={
                images_placeholder: train_image,
                labels_placeholder: train_label,
                keep_prob: 1.0})
            summary_writer.add_summary(summary_str, step)

    # 訓練が終了したらテストデータに対する精度を表示
    print "test accuracy %g"%sess.run(acc, feed_dict={
        images_placeholder: test_image,
        labels_placeholder: test_label,
        keep_prob: 1.0})

    # 最終的なモデルを保存
    save_path = saver.save(sess, "model.ckpt")
  • 気になる質問をクリップする

    クリップした質問は、後からいつでもマイページで確認できます。

    またクリップした質問に回答があった際、通知やメールを受け取ることができます。

    クリップを取り消します

  • 良い質問の評価を上げる

    以下のような質問は評価を上げましょう

    • 質問内容が明確
    • 自分も答えを知りたい
    • 質問者以外のユーザにも役立つ

    評価が高い質問は、TOPページの「注目」タブのフィードに表示されやすくなります。

    質問の評価を上げたことを取り消します

  • 評価を下げられる数の上限に達しました

    評価を下げることができません

    • 1日5回まで評価を下げられます
    • 1日に1ユーザに対して2回まで評価を下げられます

    質問の評価を下げる

    teratailでは下記のような質問を「具体的に困っていることがない質問」、「サイトポリシーに違反する質問」と定義し、推奨していません。

    • プログラミングに関係のない質問
    • やってほしいことだけを記載した丸投げの質問
    • 問題・課題が含まれていない質問
    • 意図的に内容が抹消された質問
    • 広告と受け取られるような投稿

    評価が下がると、TOPページの「アクティブ」「注目」タブのフィードに表示されにくくなります。

    質問の評価を下げたことを取り消します

    この機能は開放されていません

    評価を下げる条件を満たしてません

    評価を下げる理由を選択してください

    詳細な説明はこちら

    上記に当てはまらず、質問内容が明確になっていない質問には「情報の追加・修正依頼」機能からコメントをしてください。

    質問の評価を下げる機能の利用条件

    この機能を利用するためには、以下の事項を行う必要があります。

回答 1

0

はい 統一してください
ニュートラルネットワークを用いる場合、入力形状は固定が基本です

 # 入力を28x28x3に変形
 x_image = tf.reshape(images_placeholder, [-1, 28, 28, 3])

このネットワークには28 * 28 * 3 に変換可能なサイズを渡しましょう。

ネットワークの部分だけ修正(見落としがある可能性があります)

#!/usr/bin/env python
# -*- coding: utf-8 -*-
import sys
import cv2
import numpy as np
import tensorflow as tf
import tensorflow.python.platform

NUM_CLASSES = 12
IMAGE_SIZE = 56
IMAGE_PIXELS = IMAGE_SIZE*IMAGE_SIZE*3

flags = tf.app.flags
FLAGS = flags.FLAGS
flags.DEFINE_string('train', 'train.txt', 'File name of train data')
flags.DEFINE_string('test', 'test.txt', 'File name of train data')
flags.DEFINE_string('train_dir', '/tmp/data', 'Directory to put the training data.')
flags.DEFINE_integer('max_steps', 200, 'Number of steps to run trainer.')
flags.DEFINE_integer('batch_size', 10, 'Batch size'
                     'Must divide evenly into the dataset sizes.')
flags.DEFINE_float('learning_rate', 1e-4, 'Initial learning rate.')

def inference(images_placeholder, keep_prob):
    """ 予測モデルを作成する関数

    引数: 
      images_placeholder: 画像のplaceholder
      keep_prob: dropout率のplace_holder

    返り値:
      y_conv: 各クラスの確率(のようなもの)
    """
    # 重みを標準偏差0.1の正規分布で初期化
    def weight_variable(shape):
      initial = tf.truncated_normal(shape, stddev=0.1)
      return tf.Variable(initial)

    # バイアスを標準偏差0.1の正規分布で初期化
    def bias_variable(shape):
      initial = tf.constant(0.1, shape=shape)
      return tf.Variable(initial)

    # 畳み込み層の作成
    def conv2d(x, W):
      return tf.nn.conv2d(x, W, strides=[1, 1, 1, 1], padding='SAME')

    # プーリング層の作成
    def max_pool_2x2(x):
      return tf.nn.max_pool(x, ksize=[1, 2, 2, 1],
                            strides=[1, 2, 2, 1], padding='SAME')

    # 入力を28x28x3に変形
    x_image = tf.reshape(images_placeholder, [-1, 56, 56, 3])

    # 畳み込み層1の作成
    with tf.name_scope('conv1') as scope:
        W_conv1 = weight_variable([5, 5, 3, 32])
        b_conv1 = bias_variable([32])
        h_conv1 = tf.nn.relu(conv2d(x_image, W_conv1) + b_conv1)

    # プーリング層1の作成
    with tf.name_scope('pool1') as scope:
        h_pool1 = max_pool_2x2(h_conv1)

    # 畳み込み層2の作成
    with tf.name_scope('conv2') as scope:
        W_conv2 = weight_variable([5, 5, 32, 64])
        b_conv2 = bias_variable([64])
        h_conv2 = tf.nn.relu(conv2d(h_pool1, W_conv2) + b_conv2)

    # プーリング層2の作成
    with tf.name_scope('pool2') as scope:
        h_pool2 = max_pool_2x2(h_conv2)

    # 全結合層1の作成
    with tf.name_scope('fc1') as scope:
        # 7 * 7 * 64 から不定のsizeに変更 画像sizeを変更しても修正がいらない
        size = tf.size(h_pool2[0])
        W_fc1 = weight_variable([size, 1024])
        b_fc1 = bias_variable([1024])
        h_pool2_flat = tf.reshape(h_pool2, [-1, size])
        h_fc1 = tf.nn.relu(tf.matmul(h_pool2_flat, W_fc1) + b_fc1)
        # dropoutの設定
        h_fc1_drop = tf.nn.dropout(h_fc1, keep_prob)

    # 全結合層2の作成
    with tf.name_scope('fc2') as scope:
        W_fc2 = weight_variable([1024, NUM_CLASSES])
        b_fc2 = bias_variable([NUM_CLASSES])

投稿

編集

  • 回答の評価を上げる

    以下のような回答は評価を上げましょう

    • 正しい回答
    • わかりやすい回答
    • ためになる回答

    評価が高い回答ほどページの上位に表示されます。

  • 回答の評価を下げる

    下記のような回答は推奨されていません。

    • 間違っている回答
    • 質問の回答になっていない投稿
    • スパムや攻撃的な表現を用いた投稿

    評価を下げる際はその理由を明確に伝え、適切な回答に修正してもらいましょう。

  • 2017/10/10 21:34

    データセットの画像のサイズが様々でも28×28にreshapeされて入力されるということでしょうか.
    もしそうであれば56×56で入力する方法を教えて頂けませんでしょうか.

    キャンセル

  • 2017/10/10 21:37

    ごめんなさい 先ほどの回答は少し間違いがあったので訂正しました。
    56 * 56ですと形状が合わないので無理です。

    キャンセル

  • 2017/10/10 21:39

    どういうことでしょうか.
    教えていただけませんか.

    キャンセル

  • 2017/10/10 21:46

    reshape関数はトータルサイズが同じでなければなりません。
    28 * 28 * 3だと合計で2352なのでそれと同じサイズにする必要があります。
    56 * 56 だと 3136なので形状が合わずreshapeは不可能という事です。

    56*56の画像を渡したい場合は、reshapeのサイズを変えるか、reshapeをしないなりして、フィルターの構造を変えてやればいいです。
    W_conv1 = weight_variable([5, 5, 3, 32])
    変更後のフィルター↓
    W_conv1 = weight_variable([5, 5, 1, 32])

    キャンセル

  • 2017/10/10 21:50

    後は
    W_fc1 = weight_variable([7*7*64, 1024]
    ここのサイズとかも変えてやる必要がありそうです。
    とりあえず画像サイズに関係する部分の変更は必要かと

    キャンセル

  • 2017/10/10 21:51

    すみませんよくわかりません.
    2352が28×28ピクセルの3次元であるということは分かるのですがなぜ2352にしなければならないのか
    またなぜそのように変更すればうまくいくのか教えて頂けませんか
    宜しくお願いいたします

    キャンセル

  • 2017/10/10 21:53

    どこをどう変更すればいいか分からないのですが,成果を早く出さなければならないので焦っています.お力を貸していただけませんでしょうか.

    キャンセル

  • 2017/10/10 22:03

    なぜreshapeする必要があるのか?という事でしょうか?
    それは、3次元に変換する事で、より高レベルな特徴抽出が出来るからです。もしくは、cnnを使う為には2次元以上の配列が必要だからです。

    このニュートラルネットには何の画像を渡すかは把握出来てないですが、
    reshapeで3次元に変換してる所を見ると、一次元配列のものを渡すのかなと思います。

    どこをどう変更すればいいかは私もコード全てを追い切れてないので全部はわかりませんが気づいた部分だけ回答に追記しておきます。

    キャンセル

  • 2017/10/10 22:07

    使用する画像はサイズの異なり,1ピクセルが256階調となっている正方形画像です.画像は12種類で2841枚,最小のもので28×28,最大のもので405×405となっています.一応このコードで動くのですが,精度が良くないので入力画像を大きくしたいと考えています.

    キャンセル

  • 2017/10/10 22:26

    なるほど、そういう事でしたか。
    でしたら
    img = cv2.resize(img, (28, 28))
    のresizeの部分を変えればいいのでは?
    それと何を判別させたいかによってはネットワークの構造が単純である為精度が出ない可能性もあります。

    キャンセル

  • 2017/10/10 22:28

    それと3次元の画像を渡す前提であればreshapeは必要ないですね。
    このコードのreshapeは3次元に変換しているものですので

    キャンセル

  • 2017/10/10 22:31

    と思ったら途中でいったん一次元に変換しているんですね。
    であるならば必要そうです。
    # 一列にした後、0-1のfloat値にする
    train_image.append(img.flatten().astype(np.float32)/255.0)

    キャンセル

同じタグがついた質問を見る

  • Python

    12184questions

    Pythonは、コードの読みやすさが特徴的なプログラミング言語の1つです。 強い型付け、動的型付けに対応しており、後方互換性がないバージョン2系とバージョン3系が使用されています。 商用製品の開発にも無料で使用でき、OSだけでなく仮想環境にも対応。Unicodeによる文字列操作をサポートしているため、日本語処理も標準で可能です。

  • Python 3.x

    10195questions

    Python 3はPythonプログラミング言語の最新バージョンであり、2008年12月3日にリリースされました。

  • Python 2.7

    1468questions

    Python 2.7は2.xシリーズでは最後のメジャーバージョンです。Python3.1にある機能の多くが含まれています。

  • TensorFlow

    944questions