質問をすることでしか得られない、回答やアドバイスがある。

15分調べてもわからないことは、質問しよう!

新規登録して質問してみよう
ただいま回答率
87.20%
Keras

Kerasは、TheanoやTensorFlow/CNTK対応のラッパーライブラリです。DeepLearningの数学的部分を短いコードでネットワークとして表現することが可能。DeepLearningの最新手法を迅速に試すことができます。

深層学習

深層学習は、多数のレイヤのニューラルネットワークによる機械学習手法。人工知能研究の一つでディープラーニングとも呼ばれています。コンピューター自体がデータの潜在的な特徴を汲み取り、効率的で的確な判断を実現することができます。

CNN (Convolutional Neural Network)

CNN (Convolutional Neural Network)は、全結合層のみではなく畳み込み層とプーリング層で構成されるニューラルネットワークです。画像認識において優れた性能を持ち、畳み込みニューラルネットワークとも呼ばれています。

機械学習

機械学習は、データからパターンを自動的に発見し、そこから知能的な判断を下すためのコンピューターアルゴリズムを指します。人工知能における課題のひとつです。

Python

Pythonは、コードの読みやすさが特徴的なプログラミング言語の1つです。 強い型付け、動的型付けに対応しており、後方互換性がないバージョン2系とバージョン3系が使用されています。 商用製品の開発にも無料で使用でき、OSだけでなく仮想環境にも対応。Unicodeによる文字列操作をサポートしているため、日本語処理も標準で可能です。

解決済

CNNモデルの畳み込み層とプーリング層の数について

legend_hero
legend_hero

総合スコア3

Keras

Kerasは、TheanoやTensorFlow/CNTK対応のラッパーライブラリです。DeepLearningの数学的部分を短いコードでネットワークとして表現することが可能。DeepLearningの最新手法を迅速に試すことができます。

深層学習

深層学習は、多数のレイヤのニューラルネットワークによる機械学習手法。人工知能研究の一つでディープラーニングとも呼ばれています。コンピューター自体がデータの潜在的な特徴を汲み取り、効率的で的確な判断を実現することができます。

CNN (Convolutional Neural Network)

CNN (Convolutional Neural Network)は、全結合層のみではなく畳み込み層とプーリング層で構成されるニューラルネットワークです。画像認識において優れた性能を持ち、畳み込みニューラルネットワークとも呼ばれています。

機械学習

機械学習は、データからパターンを自動的に発見し、そこから知能的な判断を下すためのコンピューターアルゴリズムを指します。人工知能における課題のひとつです。

Python

Pythonは、コードの読みやすさが特徴的なプログラミング言語の1つです。 強い型付け、動的型付けに対応しており、後方互換性がないバージョン2系とバージョン3系が使用されています。 商用製品の開発にも無料で使用でき、OSだけでなく仮想環境にも対応。Unicodeによる文字列操作をサポートしているため、日本語処理も標準で可能です。

1回答

0評価

0クリップ

452閲覧

投稿2022/02/14 15:48

機械学習の初学者です.
畳み込み層とプーリング層というものがいまいち理解できなく,困っています.
このプログラムでは層がmodel.addのたびに1層追加されており,合計18層になっているという認識であっているでしょうか??

ソースコード

python

from keras.models import Sequential from keras.layers import Conv2D, MaxPooling2D from keras.layers import Activation, Dropout, Flatten, Dense from keras.optimizers import RMSprop from keras.utils import np_utils import keras import numpy as np classes = ["dog", "cat"] num_classes = len(classes) image_size = 64 """ データを読み込む関数 """ def load_data(): X_train, X_test, y_train, y_test = np.load("./dog_cat.npy", allow_pickle=True) # 入力データの各画素値を0-1の範囲で正規化(学習コストを下げるため) X_train = X_train.astype("float") / 255 X_test = X_test.astype("float") / 255 # to_categorical()にてラベルをone hot vector化 y_train = np_utils.to_categorical(y_train, num_classes) y_test = np_utils.to_categorical(y_test, num_classes) return X_train, y_train, X_test, y_test """ モデルを学習する関数 """ def train(X, y, X_test, y_test): model = Sequential() # Xは(1200, 64, 64, 3) # X.shape[1:]とすることで、(64, 64, 3)となり、入力にすることが可能です。 model.add(Conv2D(32,(3,3), padding='same',input_shape=X.shape[1:])) model.add(Activation('relu')) model.add(Conv2D(32,(3,3))) model.add(Activation('relu')) model.add(MaxPooling2D(pool_size=(2,2))) model.add(Dropout(0.1)) model.add(Conv2D(64,(3,3), padding='same')) model.add(Activation('relu')) model.add(Conv2D(64,(3,3))) model.add(Activation('relu')) model.add(MaxPooling2D(pool_size=(2,2))) model.add(Dropout(0.25)) model.add(Flatten()) model.add(Dense(512)) model.add(Activation('relu')) model.add(Dropout(0.45)) model.add(Dense(2)) model.add(Activation('softmax')) # https://keras.io/ja/optimizers/ # 今回は、最適化アルゴリズムにRMSpropを利用 opt = RMSprop(lr=0.00005, decay=1e-6) # https://keras.io/ja/models/sequential/ model.compile(loss='categorical_crossentropy',optimizer=opt,metrics=['accuracy']) model.fit(X, y, batch_size=28, epochs=40) # HDF5ファイルにKerasのモデルを保存 model.save('./cnn.h5') return model """ メイン関数 データの読み込みとモデルの学習を行います。 """ def main(): # データの読み込み X_train, y_train, X_test, y_test = load_data() # モデルの学習 model = train(X_train, y_train, X_test, y_test) main()

良い質問の評価を上げる

以下のような質問は評価を上げましょう

  • 質問内容が明確
  • 自分も答えを知りたい
  • 質問者以外のユーザにも役立つ

評価が高い質問は、TOPページの「注目」タブのフィードに表示されやすくなります。

気になる質問をクリップする

クリップした質問は、後からいつでもマイページで確認できます。

またクリップした質問に回答があった際、通知やメールを受け取ることができます。

teratailでは下記のような質問を「具体的に困っていることがない質問」、「サイトポリシーに違反する質問」と定義し、推奨していません。

  • プログラミングに関係のない質問
  • やってほしいことだけを記載した丸投げの質問
  • 問題・課題が含まれていない質問
  • 意図的に内容が抹消された質問
  • 過去に投稿した質問と同じ内容の質問
  • 広告と受け取られるような投稿

評価を下げると、トップページの「アクティブ」「注目」タブのフィードに表示されにくくなります。

まだ回答がついていません

会員登録して回答してみよう

15分調べてもわからないことは
teratailで質問しよう!

ただいまの回答率
87.20%

質問をまとめることで
思考を整理して素早く解決

テンプレート機能で
簡単に質問をまとめる

質問する

関連した質問

同じタグがついた質問を見る

Keras

Kerasは、TheanoやTensorFlow/CNTK対応のラッパーライブラリです。DeepLearningの数学的部分を短いコードでネットワークとして表現することが可能。DeepLearningの最新手法を迅速に試すことができます。

深層学習

深層学習は、多数のレイヤのニューラルネットワークによる機械学習手法。人工知能研究の一つでディープラーニングとも呼ばれています。コンピューター自体がデータの潜在的な特徴を汲み取り、効率的で的確な判断を実現することができます。

CNN (Convolutional Neural Network)

CNN (Convolutional Neural Network)は、全結合層のみではなく畳み込み層とプーリング層で構成されるニューラルネットワークです。画像認識において優れた性能を持ち、畳み込みニューラルネットワークとも呼ばれています。

機械学習

機械学習は、データからパターンを自動的に発見し、そこから知能的な判断を下すためのコンピューターアルゴリズムを指します。人工知能における課題のひとつです。

Python

Pythonは、コードの読みやすさが特徴的なプログラミング言語の1つです。 強い型付け、動的型付けに対応しており、後方互換性がないバージョン2系とバージョン3系が使用されています。 商用製品の開発にも無料で使用でき、OSだけでなく仮想環境にも対応。Unicodeによる文字列操作をサポートしているため、日本語処理も標準で可能です。