質問をすることでしか得られない、回答やアドバイスがある。

15分調べてもわからないことは、質問しよう!

新規登録して質問してみよう
ただいま回答率
87.20%
深層学習

深層学習は、多数のレイヤのニューラルネットワークによる機械学習手法。人工知能研究の一つでディープラーニングとも呼ばれています。コンピューター自体がデータの潜在的な特徴を汲み取り、効率的で的確な判断を実現することができます。

機械学習

機械学習は、データからパターンを自動的に発見し、そこから知能的な判断を下すためのコンピューターアルゴリズムを指します。人工知能における課題のひとつです。

zsh

zshは、UNIX系OSのシェルの1つです。 cshやksn系のコマンドライン編集機能も実装されたシェルです。

Python

Pythonは、コードの読みやすさが特徴的なプログラミング言語の1つです。 強い型付け、動的型付けに対応しており、後方互換性がないバージョン2系とバージョン3系が使用されています。 商用製品の開発にも無料で使用でき、OSだけでなく仮想環境にも対応。Unicodeによる文字列操作をサポートしているため、日本語処理も標準で可能です。

受付中

RNNが実行できない(zsh: abort)

Logarithm
Logarithm

総合スコア29

深層学習

深層学習は、多数のレイヤのニューラルネットワークによる機械学習手法。人工知能研究の一つでディープラーニングとも呼ばれています。コンピューター自体がデータの潜在的な特徴を汲み取り、効率的で的確な判断を実現することができます。

機械学習

機械学習は、データからパターンを自動的に発見し、そこから知能的な判断を下すためのコンピューターアルゴリズムを指します。人工知能における課題のひとつです。

zsh

zshは、UNIX系OSのシェルの1つです。 cshやksn系のコマンドライン編集機能も実装されたシェルです。

Python

Pythonは、コードの読みやすさが特徴的なプログラミング言語の1つです。 強い型付け、動的型付けに対応しており、後方互換性がないバージョン2系とバージョン3系が使用されています。 商用製品の開発にも無料で使用でき、OSだけでなく仮想環境にも対応。Unicodeによる文字列操作をサポートしているため、日本語処理も標準で可能です。

1回答

0評価

0クリップ

385閲覧

投稿2022/01/08 06:49

編集2022/01/12 10:55

RNNの学習中になぜかRNNのみ実行できません。CNNなどは普通にできたのですが...
私の環境:
・M1 MacBookAir
miniforgeで構築
python 3.8.12
TensorFlow 2.7

色々調べると以下のような解決策がありましたが、だめでした。
・miniforge環境を再構築(https://github.com/apple/tensorflow_macos/issues/210)
・仮想環境を再構築

おそらく最後のmodel.fitの部分が影響しています。

from tensorflow import keras import tensorflow as tf import numpy as np import matplotlib.pyplot as plt import matplotlib as mpl np.random.seed(42) #時系列データの作製 def generate_time_series(batch_size, n_steps): freq1, freq2, offsets1, offsets2 = np.random.rand(4, batch_size, 1) time = np.linspace(0, 1, n_steps) series = 0.5 * np.sin((time - offsets1) * (freq1 * 10 + 10)) # wave 1 series += 0.2 * np.sin((time - offsets2) * (freq2 * 20 + 20)) # + wave 2 series += 0.1 * (np.random.rand(batch_size, n_steps) - 0.5) # + noise return series[..., np.newaxis].astype(np.float32) n_steps = 50 series = generate_time_series(10000, n_steps + 1) X_train, y_train = series[:7000, :n_steps], series[:7000, -1] X_valid, y_valid = series[7000:9000, :n_steps], series[7000:9000, -1] X_test, y_test = series[9000:, :n_steps], series[9000:, -1] #データをプロットする関数の作成 def plot_series(series, y=None, y_pred=None, x_label='$t$', y_label="$x(t)$", legend=True): plt.plot(series, '.-') plt.grid(True) if y is not None: plt.plot(n_steps, y, 'bo', label='Target') if y_pred is not None: plt.plot(n_steps, y_pred, 'rx', markersize=10, label='Prediction') if x_label: plt.xlabel(x_label, fontsize=16) if y_label: plt.ylabel(y_label, fontsize=16, rotation=0) plt.hlines(0, 0, 100, linewidth=1) plt.axis([0, n_steps + 1, -1, 1]) if legend and (y or y_pred): plt.legend(fontsize=14, loc='upper left') #学習過程の損失関数をプロットする関数の作製 def plot_learning_curve(loss, val_loss): plt.plot(np.arange(len(loss)) + 0.5, loss, 'b.-', label='Training loss') plt.plot(np.arange(len(val_loss)) + 1, val_loss, 'r.-', label='Validation loss') plt.gca().xaxis.set_major_locator(mpl.ticker.MaxNLocator(integer=True)) plt.axis([1, 20, 0, 0.05]) plt.xlabel('Epochs') plt.ylabel('MSE') plt.grid(True) plt.legend() #単純なRNNを作製 model = keras.models.Sequential([ keras.layers.SimpleRNN(1, input_shape=[None, 1]) #The most simple RNN ]) #コンパイルと学習 optimizer = keras.optimizers.Adam(learning_rate=0.005) model.compile(loss='mse', optimizer=optimizer) history = model.fit(X_train, y_train, epochs=20, validation_data=(X_valid, y_valid)) model.evaluate(X_valid, y_valid) plot_learning_curve(history.history['loss'], history.history['val_loss']) plt.show()
systemMemory: 16.00 GB maxCacheSize: 5.33 GB 2022-01-08 15:45:36.944693: I tensorflow/core/common_runtime/pluggable_device/pluggable_device_factory.cc:305] Could not identify NUMA node of platform GPU ID 0, defaulting to 0. Your kernel may not have been built with NUMA support. 2022-01-08 15:45:36.944803: I tensorflow/core/common_runtime/pluggable_device/pluggable_device_factory.cc:271] Created TensorFlow device (/job:localhost/replica:0/task:0/device:GPU:0 with 0 MB memory) -> physical PluggableDevice (device: 0, name: METAL, pci bus id: <undefined>) 2022-01-08 15:45:37.010815: W tensorflow/core/platform/profile_utils/cpu_utils.cc:128] Failed to get CPU frequency: 0 Hz Epoch 1/20 2022-01-08 15:45:37.206878: I tensorflow/core/grappler/optimizers/custom_graph_optimizer_registry.cc:112] Plugin optimizer for device_type GPU is enabled. 2022-01-08 15:45:37.269560: F tensorflow/core/framework/tensor.cc:681] Check failed: IsAligned() ptr = 0x14dcf2150 zsh: abort /Users/name/miniforge3/envs/Python3.8/bin/python

良い質問の評価を上げる

以下のような質問は評価を上げましょう

  • 質問内容が明確
  • 自分も答えを知りたい
  • 質問者以外のユーザにも役立つ

評価が高い質問は、TOPページの「注目」タブのフィードに表示されやすくなります。

気になる質問をクリップする

クリップした質問は、後からいつでもマイページで確認できます。

またクリップした質問に回答があった際、通知やメールを受け取ることができます。

teratailでは下記のような質問を「具体的に困っていることがない質問」、「サイトポリシーに違反する質問」と定義し、推奨していません。

  • プログラミングに関係のない質問
  • やってほしいことだけを記載した丸投げの質問
  • 問題・課題が含まれていない質問
  • 意図的に内容が抹消された質問
  • 過去に投稿した質問と同じ内容の質問
  • 広告と受け取られるような投稿

評価を下げると、トップページの「アクティブ」「注目」タブのフィードに表示されにくくなります。

まだ回答がついていません

会員登録して回答してみよう

15分調べてもわからないことは
teratailで質問しよう!

ただいまの回答率
87.20%

質問をまとめることで
思考を整理して素早く解決

テンプレート機能で
簡単に質問をまとめる

質問する

関連した質問

同じタグがついた質問を見る

深層学習

深層学習は、多数のレイヤのニューラルネットワークによる機械学習手法。人工知能研究の一つでディープラーニングとも呼ばれています。コンピューター自体がデータの潜在的な特徴を汲み取り、効率的で的確な判断を実現することができます。

機械学習

機械学習は、データからパターンを自動的に発見し、そこから知能的な判断を下すためのコンピューターアルゴリズムを指します。人工知能における課題のひとつです。

zsh

zshは、UNIX系OSのシェルの1つです。 cshやksn系のコマンドライン編集機能も実装されたシェルです。

Python

Pythonは、コードの読みやすさが特徴的なプログラミング言語の1つです。 強い型付け、動的型付けに対応しており、後方互換性がないバージョン2系とバージョン3系が使用されています。 商用製品の開発にも無料で使用でき、OSだけでなく仮想環境にも対応。Unicodeによる文字列操作をサポートしているため、日本語処理も標準で可能です。