質問をすることでしか得られない、回答やアドバイスがある。

15分調べてもわからないことは、質問しよう!

新規登録して質問してみよう
ただいま回答率
87.20%
CUDA

CUDAは並列計算プラットフォームであり、Nvidia GPU(Graphics Processing Units)向けのプログラミングモデルです。CUDAは様々なプログラミング言語、ライブラリ、APIを通してNvidiaにインターフェイスを提供します。

Anaconda

Anacondaは、Python本体とPythonで利用されるライブラリを一括でインストールできるパッケージです。環境構築が容易になるため、Python開発者間ではよく利用されており、商用目的としても利用できます。

Python 3.x

Python 3はPythonプログラミング言語の最新バージョンであり、2008年12月3日にリリースされました。

解決済

Anaconda上のTensorflow GPU版を使うとき、処理の初期化の時間が長すぎる

raddeee
raddeee

総合スコア11

CUDA

CUDAは並列計算プラットフォームであり、Nvidia GPU(Graphics Processing Units)向けのプログラミングモデルです。CUDAは様々なプログラミング言語、ライブラリ、APIを通してNvidiaにインターフェイスを提供します。

Anaconda

Anacondaは、Python本体とPythonで利用されるライブラリを一括でインストールできるパッケージです。環境構築が容易になるため、Python開発者間ではよく利用されており、商用目的としても利用できます。

Python 3.x

Python 3はPythonプログラミング言語の最新バージョンであり、2008年12月3日にリリースされました。

1回答

0評価

0クリップ

3328閲覧

投稿2021/02/19 12:17

編集2021/02/19 12:25

TensorFlowのCPU版で問題なく動いたプログラムをGPUサポート環境のTensorFlowを動かそうとするときに、一応処理は成功するのですが初期化と思われる段階で時間がかなりかかっています。
具体的に示すと、下記のログの
I tensorflow/core/common_runtime/gpu/gpu_device.cc:1697] Adding visible gpu devices: 0 で約5分、
I tensorflow/stream_executor/platform/default/dso_loader.cc:44] Successfully opened dynamic library cudnn64_7.dll で20分弱かかっています。

ログ: https://pastebin.com/ckebAnmZ

環境構成は以下の通りです
Python 3.7
cuDNN 7.6.5
CUDA 10.1
TensorFlow 2.1.0

どうかよろしくお願いいたします。


コード: https://www.tensorflow.org/tutorials/images/classification?hl=ja

Python

import tensorflow as tf from tensorflow.keras.models import Sequential from tensorflow.keras.layers import Dense, Conv2D, Flatten, Dropout, MaxPooling2D from tensorflow.keras.preprocessing.image import ImageDataGenerator import scipy import os import numpy as np import matplotlib.pyplot as plt _URL = 'https://storage.googleapis.com/mledu-datasets/cats_and_dogs_filtered.zip' path_to_zip = tf.keras.utils.get_file('cats_and_dogs.zip', origin=_URL, extract=True) PATH = os.path.join(os.path.dirname(path_to_zip), 'cats_and_dogs_filtered') train_dir = os.path.join(PATH, 'train') validation_dir = os.path.join(PATH, 'validation') train_cats_dir = os.path.join(train_dir, 'cats') # 学習用の猫画像のディレクトリ train_dogs_dir = os.path.join(train_dir, 'dogs') # 学習用の犬画像のディレクトリ validation_cats_dir = os.path.join(validation_dir, 'cats') # 検証用の猫画像のディレクトリ validation_dogs_dir = os.path.join(validation_dir, 'dogs') # 検証用の犬画像のディレクトリ num_cats_tr = len(os.listdir(train_cats_dir)) num_dogs_tr = len(os.listdir(train_dogs_dir)) num_cats_val = len(os.listdir(validation_cats_dir)) num_dogs_val = len(os.listdir(validation_dogs_dir)) total_train = num_cats_tr + num_dogs_tr total_val = num_cats_val + num_dogs_val batch_size = 128 epochs = 15 IMG_HEIGHT = 150 IMG_WIDTH = 150 train_image_generator = ImageDataGenerator(rescale=1./255) # 学習データのジェネレータ validation_image_generator = ImageDataGenerator(rescale=1./255) # 検証データのジェネレータ train_data_gen = train_image_generator.flow_from_directory(batch_size=batch_size, directory=train_dir, shuffle=True, target_size=(IMG_HEIGHT, IMG_WIDTH), class_mode='binary') val_data_gen = validation_image_generator.flow_from_directory(batch_size=batch_size, directory=validation_dir, target_size=(IMG_HEIGHT, IMG_WIDTH), class_mode='binary') model = Sequential([ Conv2D(16, 3, padding='same', activation='relu', input_shape=(IMG_HEIGHT, IMG_WIDTH ,3)), MaxPooling2D(), Conv2D(32, 3, padding='same', activation='relu'), MaxPooling2D(), Conv2D(64, 3, padding='same', activation='relu'), MaxPooling2D(), Flatten(), Dense(512, activation='relu'), Dense(1, activation='sigmoid') ]) model.compile(optimizer='adam', loss='binary_crossentropy', metrics=['accuracy']) model.summary() history = model.fit_generator( train_data_gen, steps_per_epoch=total_train // batch_size, epochs=epochs, validation_data=val_data_gen, validation_steps=total_val // batch_size ) acc = history.history['accuracy'] val_acc = history.history['val_accuracy'] loss = history.history['loss'] val_loss = history.history['val_loss'] epochs_range = range(epochs) plt.figure(figsize=(8, 8)) plt.subplot(1, 2, 1) plt.plot(epochs_range, acc, label='Training Accuracy') plt.plot(epochs_range, val_acc, label='Validation Accuracy') plt.legend(loc='lower right') plt.title('Training and Validation Accuracy') plt.subplot(1, 2, 2) plt.plot(epochs_range, loss, label='Training Loss') plt.plot(epochs_range, val_loss, label='Validation Loss') plt.legend(loc='upper right') plt.title('Training and Validation Loss') plt.show()

良い質問の評価を上げる

以下のような質問は評価を上げましょう

  • 質問内容が明確
  • 自分も答えを知りたい
  • 質問者以外のユーザにも役立つ

評価が高い質問は、TOPページの「注目」タブのフィードに表示されやすくなります。

気になる質問をクリップする

クリップした質問は、後からいつでもマイページで確認できます。

またクリップした質問に回答があった際、通知やメールを受け取ることができます。

teratailでは下記のような質問を「具体的に困っていることがない質問」、「サイトポリシーに違反する質問」と定義し、推奨していません。

  • プログラミングに関係のない質問
  • やってほしいことだけを記載した丸投げの質問
  • 問題・課題が含まれていない質問
  • 意図的に内容が抹消された質問
  • 過去に投稿した質問と同じ内容の質問
  • 広告と受け取られるような投稿

評価を下げると、トップページの「アクティブ」「注目」タブのフィードに表示されにくくなります。

raddeee

2021/02/19 13:23

duplicateな質問でしたね、すみません... CUDA等のバージョンを更新してみて試してみます。

まだ回答がついていません

会員登録して回答してみよう

15分調べてもわからないことは
teratailで質問しよう!

ただいまの回答率
87.20%

質問をまとめることで
思考を整理して素早く解決

テンプレート機能で
簡単に質問をまとめる

質問する

関連した質問

同じタグがついた質問を見る

CUDA

CUDAは並列計算プラットフォームであり、Nvidia GPU(Graphics Processing Units)向けのプログラミングモデルです。CUDAは様々なプログラミング言語、ライブラリ、APIを通してNvidiaにインターフェイスを提供します。

Anaconda

Anacondaは、Python本体とPythonで利用されるライブラリを一括でインストールできるパッケージです。環境構築が容易になるため、Python開発者間ではよく利用されており、商用目的としても利用できます。

Python 3.x

Python 3はPythonプログラミング言語の最新バージョンであり、2008年12月3日にリリースされました。