質問をすることでしか得られない、回答やアドバイスがある。

15分調べてもわからないことは、質問しよう!

ただいまの
回答率

90.12%

keras, Gridsearch, エポック1回しか出来てない?

解決済

回答 1

投稿

  • 評価
  • クリップ 0
  • VIEW 57

iforin

score 3

前提・実現したいこと

kerasでIrisデータを使ってgridsearchを試しています.

発生している問題・エラーメッセージ

Epoch1/1と出力されているのですが,epoch2以降は学習されていないのでしょうか?

イメージ説明

該当のソースコード

import numpy as np
from sklearn import datasets, preprocessing
from sklearn.model_selection import train_test_split
from sklearn.model_selection import GridSearchCV
from keras.models import Sequential
from keras.layers.core import Dense, Activation
from keras.utils import np_utils
from keras import backend as K
from keras.wrappers.scikit_learn import KerasClassifier


# import data and divided it into training and test purposes
iris = datasets.load_iris()
x = preprocessing.scale(iris.data)
y = np_utils.to_categorical(iris.target)
x_tr, x_te, y_tr, y_te = train_test_split(x, y, train_size  = 0.7)
num_classes = y_te.shape[1]


# Define model for iris classification
def iris_model(activation="relu", optimizer="adam", out_dim=100):
    model = Sequential()
    model.add(Dense(out_dim, input_dim=4, activation=activation))
    model.add(Dense(out_dim, activation=activation))
    model.add(Dense(num_classes, activation="softmax"))
    model.compile(loss='categorical_crossentropy', optimizer=optimizer, metrics=['accuracy'])
    return model

# Define options for parameters
activation = ["relu", "sigmoid"]
optimizer = ["adam", "adagrad"]
out_dim = np.array([100, 200])
nb_epoch = np.array([10, 25])
batch_size = np.array([10, 20])


# Retrieve model and parameter into GridSearchCV
model = KerasClassifier(build_fn=iris_model, verbose=1)
param_grid = dict(activation=activation,
                  optimizer=optimizer,
                  out_dim=out_dim,
                  nb_epoch=nb_epoch,
                  batch_size=batch_size)
grid = GridSearchCV(estimator=model, param_grid=param_grid)


# Run grid search
grid_result = grid.fit(x_tr, y_tr)


# Get the best score and the optimized mode
print (grid_result.best_score_)
print (grid_result.best_params_)

# Evaluate the model with test data
grid_eval = grid.predict(x_te)
def y_binary(i):
    if   i == 0: return [1, 0, 0]
    elif i == 1: return [0, 1, 0]
    elif i == 2: return [0, 0, 1]
y_eval = np.array([y_binary(i) for i in grid_eval])
accuracy = (y_eval == y_te)
print (np.count_nonzero(accuracy == True) / (accuracy.shape[0] * accuracy.shape[1]))


# Now see the optimized model
model = iris_model(activation=grid_result.best_params_['activation'],
                   optimizer=grid_result.best_params_['optimizer'],
                   out_dim=grid_result.best_params_['out_dim'])
model.summary()

試したこと

Epochを例えば10000のように膨大な数字にして,本当に指定のエポック数の学習ができているのか試しましたが,特に膨大な時間がかかることもなく学習ができました.

補足情報(FW/ツールのバージョンなど)

Python3.6
Keras2.2.4
sklearn0.19.1

  • 気になる質問をクリップする

    クリップした質問は、後からいつでもマイページで確認できます。

    またクリップした質問に回答があった際、通知やメールを受け取ることができます。

    クリップを取り消します

  • 良い質問の評価を上げる

    以下のような質問は評価を上げましょう

    • 質問内容が明確
    • 自分も答えを知りたい
    • 質問者以外のユーザにも役立つ

    評価が高い質問は、TOPページの「注目」タブのフィードに表示されやすくなります。

    質問の評価を上げたことを取り消します

  • 評価を下げられる数の上限に達しました

    評価を下げることができません

    • 1日5回まで評価を下げられます
    • 1日に1ユーザに対して2回まで評価を下げられます

    質問の評価を下げる

    teratailでは下記のような質問を「具体的に困っていることがない質問」、「サイトポリシーに違反する質問」と定義し、推奨していません。

    • プログラミングに関係のない質問
    • やってほしいことだけを記載した丸投げの質問
    • 問題・課題が含まれていない質問
    • 意図的に内容が抹消された質問
    • 広告と受け取られるような投稿

    評価が下がると、TOPページの「アクティブ」「注目」タブのフィードに表示されにくくなります。

    質問の評価を下げたことを取り消します

    この機能は開放されていません

    評価を下げる条件を満たしてません

    評価を下げる理由を選択してください

    詳細な説明はこちら

    上記に当てはまらず、質問内容が明確になっていない質問には「情報の追加・修正依頼」機能からコメントをしてください。

    質問の評価を下げる機能の利用条件

    この機能を利用するためには、以下の事項を行う必要があります。

回答 1

checkベストアンサー

+1

確かに動作してないですね。

Keras 2.0 から nb_epochepochsに変更されております

https://github.com/keras-team/keras/wiki/Keras-2.0-release-notes

The nb_epoch argument has been renamed epochs everywhere.

ですので

param_grid = dict(activation=activation,
                  optimizer=optimizer,
                  out_dim=out_dim,
                  nb_epoch=nb_epoch,
                  batch_size=batch_size)

の部分を

param_grid = dict(activation=activation,
                  optimizer=optimizer,
                  out_dim=out_dim,
                  epochs=nb_epoch,
                  batch_size=batch_size)


と書き換えてみてください

投稿

  • 回答の評価を上げる

    以下のような回答は評価を上げましょう

    • 正しい回答
    • わかりやすい回答
    • ためになる回答

    評価が高い回答ほどページの上位に表示されます。

  • 回答の評価を下げる

    下記のような回答は推奨されていません。

    • 間違っている回答
    • 質問の回答になっていない投稿
    • スパムや攻撃的な表現を用いた投稿

    評価を下げる際はその理由を明確に伝え、適切な回答に修正してもらいましょう。

  • 2019/10/11 17:10

    回答ありがとうございます!ご指摘の通りに書き換えたところ,指定したエポック数通りに動作するようになりました!

    キャンセル

15分調べてもわからないことは、teratailで質問しよう!

  • ただいまの回答率 90.12%
  • 質問をまとめることで、思考を整理して素早く解決
  • テンプレート機能で、簡単に質問をまとめられる

同じタグがついた質問を見る