前提・実現したいこと
pythonコードをC#に変換したいです。
学習のためです。
いろいろ試してみましたが自分の知識不足のため実装できていません。
すみませんがお願いいたします。
該当のソースコード
ソースコード import face_recognition import cv2 import numpy as np # This is a demo of running face recognition on live video from your webcam. It's a little more complicated than the # other example, but it includes some basic performance tweaks to make things run a lot faster: # 1. Process each video frame at 1/4 resolution (though still display it at full resolution) # 2. Only detect faces in every other frame of video. # PLEASE NOTE: This example requires OpenCV (the `cv2` library) to be installed only to read from your webcam. # OpenCV is *not* required to use the face_recognition library. It's only required if you want to run this # specific demo. If you have trouble installing it, try any of the other demos that don't require it instead. # Get a reference to webcam #0 (the default one) video_capture = cv2.VideoCapture(0) # Load a sample picture and learn how to recognize it. Ryo_image = face_recognition.load_image_file("image/Ryo2.jpeg") Ryo_face_encoding = face_recognition.face_encodings(Ryo_image)[0] Hayate_image = face_recognition.load_image_file("image/Hayate.jpg") Hayate_face_encoding = face_recognition.face_encodings(Hayate_image)[0] # Load a second sample picture and learn how to recognize it. Nisioka_image = face_recognition.load_image_file("image/nisioka.jpg") Nisioka_face_encoding = face_recognition.face_encodings(Nisioka_image)[0] # Create arrays of known face encodings and their names known_face_encodings = [ Ryo_face_encoding, Hayate_face_encoding, Nisioka_face_encoding ] known_face_names = [ "Yamamoto Ryo", "Kinosita Hayate", "nishioka hage" ] # Initialize some variables face_locations = [] face_encodings = [] face_names = [] process_this_frame = True while True: # Grab a single frame of video ret, frame = video_capture.read() # Resize frame of video to 1/4 size for faster face recognition processing small_frame = cv2.resize(frame, (0, 0), fx=0.25, fy=0.25) # Convert the image from BGR color (which OpenCV uses) to RGB color (which face_recognition uses) rgb_small_frame = small_frame[:, :, ::-1] # Only process every other frame of video to save time if process_this_frame: # Find all the faces and face encodings in the current frame of video face_locations = face_recognition.face_locations(rgb_small_frame) face_encodings = face_recognition.face_encodings(rgb_small_frame, face_locations) face_names = [] for face_encoding in face_encodings: # See if the face is a match for the known face(s) matches = face_recognition.compare_faces(known_face_encodings, face_encoding) name = "Unknown" # # If a match was found in known_face_encodings, just use the first one. # if True in matches: # first_match_index = matches.index(True) # name = known_face_names[first_match_index] # Or instead, use the known face with the smallest distance to the new face face_distances = face_recognition.face_distance(known_face_encodings, face_encoding) best_match_index = np.argmin(face_distances) if matches[best_match_index]: name = known_face_names[best_match_index] face_names.append(name) process_this_frame = not process_this_frame # Display the results for (top, right, bottom, left), name in zip(face_locations, face_names): # Scale back up face locations since the frame we detected in was scaled to 1/4 size top *= 4 right *= 4 bottom *= 4 left *= 4 # Draw a box around the face cv2.rectangle(frame, (left, top), (right, bottom), (0, 0, 255), 2) # Draw a label with a name below the face cv2.rectangle(frame, (left, bottom - 35), (right, bottom), (0, 0, 255), cv2.FILLED) font = cv2.FONT_HERSHEY_DUPLEX cv2.putText(frame, name, (left + 6, bottom - 6), font, 1.0, (255, 255, 255), 1) # Display the resulting image cv2.imshow('Video', frame) # Hit 'q' on the keyboard to quit! if cv2.waitKey(1) & 0xFF == ord('q'): break # Release handle to the webcam video_capture.release() cv2.destroyAllWindows()
補足情報(FW/ツールのバージョンなど)
python3.7.3
> 学習のためです。
いろいろ試してみましたが自分の知識不足のため実装できていません。
自学習であれば時間をかけて少しずつ知識を付けるしかないと思います。時間をかけられない理由でもあるのでしょうか?
学習のためなら、それこそ自分で勉強しながら少しづつ書いてみればいいのでは。