質問をすることでしか得られない、回答やアドバイスがある。

15分調べてもわからないことは、質問しよう!

新規登録して質問してみよう
ただいま回答率
87.20%
Python

Pythonは、コードの読みやすさが特徴的なプログラミング言語の1つです。 強い型付け、動的型付けに対応しており、後方互換性がないバージョン2系とバージョン3系が使用されています。 商用製品の開発にも無料で使用でき、OSだけでなく仮想環境にも対応。Unicodeによる文字列操作をサポートしているため、日本語処理も標準で可能です。

解決済

google colab のkerasがインポートできない件について

Nogutomo
Nogutomo

総合スコア1

Python

Pythonは、コードの読みやすさが特徴的なプログラミング言語の1つです。 強い型付け、動的型付けに対応しており、後方互換性がないバージョン2系とバージョン3系が使用されています。 商用製品の開発にも無料で使用でき、OSだけでなく仮想環境にも対応。Unicodeによる文字列操作をサポートしているため、日本語処理も標準で可能です。

2回答

0評価

0クリップ

2414閲覧

投稿2021/10/30 08:53

前提・実現したいこと

ここに質問の内容を詳しく書いてください。
犬、猫の分類をしようとしている最中に、エラーが発生しました。
とあるサイトのサンプルコードをそのまま使っていたのでどこに誤りがあるのかいまいちよくわからず・・
助けていただけると助かります。

よろしくお願いします。

発生している問題・エラーメッセージ

ImportError Traceback (most recent call last) <ipython-input-7-4a947a034d6c> in <module>() 2 from keras.layers import Conv2D, MaxPooling2D 3 from keras.layers import Activation, Dropout, Flatten, Dense ----> 4 from keras.optimizers import RMSprop 5 from keras.utils import np_utils 6 import keras ImportError: cannot import name 'RMSprop' from 'keras.optimizers' (/usr/local/lib/python3.7/dist-packages/keras/optimizers.py) --------------------------------------------------------------------------- NOTE: If your import is failing due to a missing package, you can manually install dependencies using either !pip or !apt. To view examples of installing some common dependencies, click the "Open Examples" button below.

該当のソースコード

from keras.models import Sequential from keras.layers import Conv2D, MaxPooling2D from keras.layers import Activation, Dropout, Flatten, Dense from keras.optimizers import RMSprop from keras.utils import np_utils import keras import numpy as np classes = ["dog", "cat"] num_classes = len(classes) image_size = 64 """ データを読み込む関数 """ def load_data(): X_train, X_test, y_train, y_test = np.load("./dog_cat.npy", allow_pickle=True) # 入力データの各画素値を0-1の範囲で正規化(学習コストを下げるため) X_train = X_train.astype("float") / 255 X_test = X_test.astype("float") / 255 # to_categorical()にてラベルをone hot vector化 y_train = np_utils.to_categorical(y_train, num_classes) y_test = np_utils.to_categorical(y_test, num_classes) return X_train, y_train, X_test, y_test """ モデルを学習する関数 """ def train(X, y, X_test, y_test): model = Sequential() # Xは(1200, 64, 64, 3) # X.shape[1:]とすることで、(64, 64, 3)となり、入力にすることが可能です。 model.add(Conv2D(32,(3,3), padding='same',input_shape=X.shape[1:])) model.add(Activation('relu')) model.add(Conv2D(32,(3,3))) model.add(Activation('relu')) model.add(MaxPooling2D(pool_size=(2,2))) model.add(Dropout(0.1)) model.add(Conv2D(64,(3,3), padding='same')) model.add(Activation('relu')) model.add(Conv2D(64,(3,3))) model.add(Activation('relu')) model.add(MaxPooling2D(pool_size=(2,2))) model.add(Dropout(0.25)) model.add(Flatten()) model.add(Dense(512)) model.add(Activation('relu')) model.add(Dropout(0.45)) model.add(Dense(2)) model.add(Activation('softmax')) # https://keras.io/ja/optimizers/ # 今回は、最適化アルゴリズムにRMSpropを利用 opt = RMSprop(lr=0.00005, decay=1e-6) # https://keras.io/ja/models/sequential/ model.compile(loss='categorical_crossentropy',optimizer=opt,metrics=['accuracy']) model.fit(X, y, batch_size=28, epochs=40) # HDF5ファイルにKerasのモデルを保存 model.save('./cnn.h5') return model """ メイン関数 データの読み込みとモデルの学習を行います。 """ def main(): # データの読み込み X_train, y_train, X_test, y_test = load_data() # モデルの学習 model = train(X_train, y_train, X_test, y_test) main()

試したこと

ここに問題に対して試したことを記載してください。

補足情報(FW/ツールのバージョンなど)

ここにより詳細な情報を記載してください。

良い質問の評価を上げる

以下のような質問は評価を上げましょう

  • 質問内容が明確
  • 自分も答えを知りたい
  • 質問者以外のユーザにも役立つ

評価が高い質問は、TOPページの「注目」タブのフィードに表示されやすくなります。

気になる質問をクリップする

クリップした質問は、後からいつでもマイページで確認できます。

またクリップした質問に回答があった際、通知やメールを受け取ることができます。

teratailでは下記のような質問を「具体的に困っていることがない質問」、「サイトポリシーに違反する質問」と定義し、推奨していません。

  • プログラミングに関係のない質問
  • やってほしいことだけを記載した丸投げの質問
  • 問題・課題が含まれていない質問
  • 意図的に内容が抹消された質問
  • 過去に投稿した質問と同じ内容の質問
  • 広告と受け取られるような投稿

評価を下げると、トップページの「アクティブ」「注目」タブのフィードに表示されにくくなります。

meg_

2021/10/30 09:46

> とあるサイトのサンプルコードをそのまま使っていたので どこのサイトですか?kerasのバージョンはそのサイトと同じですか?
jbpb0

2021/10/30 10:11 編集

from keras.models import Sequential from keras.layers import Conv2D, MaxPooling2D from keras.layers import Activation, Dropout, Flatten, Dense from keras.optimizers import RMSprop from keras.utils import np_utils import keras ↓ 変更 from tensorflow.keras.models import Sequential from tensorflow.keras.layers import Conv2D, MaxPooling2D from tensorflow.keras.layers import Activation, Dropout, Flatten, Dense from tensorflow.keras.optimizers import RMSprop from tensorflow.keras.utils import to_categorical from tensorflow import keras y_train = np_utils.to_categorical(y_train, num_classes) y_test = np_utils.to_categorical(y_test, num_classes) ↓ 変更 y_train = to_categorical(y_train, num_classes) y_test = to_categorical(y_test, num_classes) で、どうでしょうか? 参考 https://dev.infohub.cc/use-tensorflow-keras/#TensorFlowKeras-2 https://teratail.com/questions/277434
Nogutomo

2021/10/30 14:27

meg_さん、AI Academyというサイトのコードです!
Nogutomo

2021/10/30 14:28

jbpb0さん、ご丁寧にありがとうございます。 なんとか無事、解決できました!

まだ回答がついていません

会員登録して回答してみよう

15分調べてもわからないことは
teratailで質問しよう!

ただいまの回答率
87.20%

質問をまとめることで
思考を整理して素早く解決

テンプレート機能で
簡単に質問をまとめる

質問する

関連した質問

同じタグがついた質問を見る

Python

Pythonは、コードの読みやすさが特徴的なプログラミング言語の1つです。 強い型付け、動的型付けに対応しており、後方互換性がないバージョン2系とバージョン3系が使用されています。 商用製品の開発にも無料で使用でき、OSだけでなく仮想環境にも対応。Unicodeによる文字列操作をサポートしているため、日本語処理も標準で可能です。