質問をすることでしか得られない、回答やアドバイスがある。

15分調べてもわからないことは、質問しよう!

新規登録して質問してみよう
ただいま回答率
87.20%
Windows 10

Windows 10は、マイクロソフト社がリリースしたOSです。Modern UIを標準画面にした8.1から、10では再びデスクトップ主体に戻され、UIも変更されています。PCやスマホ、タブレットなど様々なデバイスに幅広く対応していることが特徴です。

Keras

Kerasは、TheanoやTensorFlow/CNTK対応のラッパーライブラリです。DeepLearningの数学的部分を短いコードでネットワークとして表現することが可能。DeepLearningの最新手法を迅速に試すことができます。

Google Colaboratory

Google Colaboratoryとは、無償のJupyterノートブック環境。教育や研究機関の機械学習の普及のためのGoogleの研究プロジェクトです。PythonやNumpyといった機械学習で要する大方の環境がすでに構築されており、コードの記述・実行、解析の保存・共有などが可能です。

Python

Pythonは、コードの読みやすさが特徴的なプログラミング言語の1つです。 強い型付け、動的型付けに対応しており、後方互換性がないバージョン2系とバージョン3系が使用されています。 商用製品の開発にも無料で使用でき、OSだけでなく仮想環境にも対応。Unicodeによる文字列操作をサポートしているため、日本語処理も標準で可能です。

解決済

No module named 'models'の対処方法

kouji_39
kouji_39

総合スコア97

Windows 10

Windows 10は、マイクロソフト社がリリースしたOSです。Modern UIを標準画面にした8.1から、10では再びデスクトップ主体に戻され、UIも変更されています。PCやスマホ、タブレットなど様々なデバイスに幅広く対応していることが特徴です。

Keras

Kerasは、TheanoやTensorFlow/CNTK対応のラッパーライブラリです。DeepLearningの数学的部分を短いコードでネットワークとして表現することが可能。DeepLearningの最新手法を迅速に試すことができます。

Google Colaboratory

Google Colaboratoryとは、無償のJupyterノートブック環境。教育や研究機関の機械学習の普及のためのGoogleの研究プロジェクトです。PythonやNumpyといった機械学習で要する大方の環境がすでに構築されており、コードの記述・実行、解析の保存・共有などが可能です。

Python

Pythonは、コードの読みやすさが特徴的なプログラミング言語の1つです。 強い型付け、動的型付けに対応しており、後方互換性がないバージョン2系とバージョン3系が使用されています。 商用製品の開発にも無料で使用でき、OSだけでなく仮想環境にも対応。Unicodeによる文字列操作をサポートしているため、日本語処理も標準で可能です。

1回答

0評価

0クリップ

975閲覧

投稿2021/06/02 10:12

前提・実現したいこと

オートエンコーダの実装です。
下記にエラーメッセージを示しました。
どうやら、modelsというモジュールがないようです。
kerasに含まれていないのdしょうか?
どう対処したらよいでしょうか。
なお、グーグルコラブ上なので、ケラスも2.5あたりの
新しいバージョンです。

発生している問題・エラーメッセージ

----> 7 from models import AutoEncoder 8 9 model = AutoEncoder() ModuleNotFoundError: No module named 'models'

該当のソースコード

python

from keras.models import Model from keras.optimizers import Adam from keras.layers import Input, Conv2D, MaxPooling2D, UpSampling2D def AutoEncoder(gpu_num=1): input_layer = Input(shape=(128, 128, 3)) conv11 = Conv2D(32, (3, 3), activation='relu', padding='same')(input_layer) conv12 = Conv2D(32, (3, 3), activation='relu', padding='same')(conv11) pool1 = MaxPooling2D()(conv12) conv21 = Conv2D(16, (3, 3), activation='relu', padding='same')(pool1) conv22 = Conv2D(16, (3, 3), activation='relu', padding='same')(conv21) encoded = MaxPooling2D()(conv22) conv31 = Conv2D(8, (3, 3), activation='relu', padding='same')(encoded) conv32 = Conv2D(8, (3, 3), activation='relu', padding='same')(conv31) up1 = UpSampling2D()(conv32) conv41 = Conv2D(16, (3, 3), activation='relu', padding='same')(up1) conv42 = Conv2D(16, (3, 3), activation='relu', padding='same')(conv41) up2 = UpSampling2D()(conv42) conv51 = Conv2D(32, (3, 3), activation='relu', padding='same')(up2) conv52 = Conv2D(32, (3, 3), activation='relu', padding='same')(conv51) decoded = Conv2D(3, (1, 1), activation='sigmoid', padding='same')(conv52) model = Model(inputs=input_layer, outputs=decoded) adam = Adam(lr=0.0001) model.compile(optimizer=adam, loss='binary_crossentropy') return model #オートエンコーダの実装 from models import AutoEncoder model = AutoEncoder() model.summary()

補足情報(FW/ツールのバージョンなど)

開発環境:Google Colaboratory
プログラム言語:python3
OS:windows10 Home
CPU:Intel(R) Core(TM) i7-7500U CPU@2.70GHz 2.90GHz

良い質問の評価を上げる

以下のような質問は評価を上げましょう

  • 質問内容が明確
  • 自分も答えを知りたい
  • 質問者以外のユーザにも役立つ

評価が高い質問は、TOPページの「注目」タブのフィードに表示されやすくなります。

気になる質問をクリップする

クリップした質問は、後からいつでもマイページで確認できます。

またクリップした質問に回答があった際、通知やメールを受け取ることができます。

teratailでは下記のような質問を「具体的に困っていることがない質問」、「サイトポリシーに違反する質問」と定義し、推奨していません。

  • プログラミングに関係のない質問
  • やってほしいことだけを記載した丸投げの質問
  • 問題・課題が含まれていない質問
  • 意図的に内容が抹消された質問
  • 過去に投稿した質問と同じ内容の質問
  • 広告と受け取られるような投稿

評価を下げると、トップページの「アクティブ」「注目」タブのフィードに表示されにくくなります。

jbpb0

2021/06/02 12:40

from models import AutoEncoder という行が不要なのでは? 同じファイル内に「def AutoEncoder()」があるのだから
kouji_39

2021/06/03 03:38

jbpb0さん、ありがとうございます。解決です。 てっきりAutoEncoderモジュールがあるものと勘違いしていました。

まだ回答がついていません

会員登録して回答してみよう

15分調べてもわからないことは
teratailで質問しよう!

ただいまの回答率
87.20%

質問をまとめることで
思考を整理して素早く解決

テンプレート機能で
簡単に質問をまとめる

質問する

関連した質問

同じタグがついた質問を見る

Windows 10

Windows 10は、マイクロソフト社がリリースしたOSです。Modern UIを標準画面にした8.1から、10では再びデスクトップ主体に戻され、UIも変更されています。PCやスマホ、タブレットなど様々なデバイスに幅広く対応していることが特徴です。

Keras

Kerasは、TheanoやTensorFlow/CNTK対応のラッパーライブラリです。DeepLearningの数学的部分を短いコードでネットワークとして表現することが可能。DeepLearningの最新手法を迅速に試すことができます。

Google Colaboratory

Google Colaboratoryとは、無償のJupyterノートブック環境。教育や研究機関の機械学習の普及のためのGoogleの研究プロジェクトです。PythonやNumpyといった機械学習で要する大方の環境がすでに構築されており、コードの記述・実行、解析の保存・共有などが可能です。

Python

Pythonは、コードの読みやすさが特徴的なプログラミング言語の1つです。 強い型付け、動的型付けに対応しており、後方互換性がないバージョン2系とバージョン3系が使用されています。 商用製品の開発にも無料で使用でき、OSだけでなく仮想環境にも対応。Unicodeによる文字列操作をサポートしているため、日本語処理も標準で可能です。