chainerを使用し, 画像認識をしています.
CIFAR-100データセットの一部のクラスを使用して, ネットワークを学習させたいのですが, その方法が分かりません.
どのように修正すれば良いでしょうか.
データ抽出部分のみのコードは以下になります.
python
1 # 抽出するデータラベル 2 mask_list = [4, 30, 55, 72, 95, 1, 32, 67, 73, 91] 3 4 # cifar100を全データ格納 5 old_train, old_test = get_cifar100() 6 7 # 学習用データを抽出 8 count = 0 9 img = None 10 for i in range(len(old_train)): 11 if np.isin(old_train[i][1], mask_list): 12 if count == 0: 13 img = old_train[i][0] 14 label = old_train[i][1] 15 count += 1 16 else: 17 img = np.vstack((img, old_train[i][0])) 18 label = np.hstack((label, old_train[i][1])) 19 20 train = tuple_dataset.TupleDataset(img, label) 21 22 # 評価用データを抽出 23 count = 0 24 img = None 25 for i in range(len(old_test)): 26 if np.isin(old_test[i][1], mask_list): 27 if count == 0: 28 img = old_train[i][0] 29 label = old_train[i][1] 30 count += 1 31 else: 32 img = np.vstack((img, old_test[i][0])) 33 label = np.hstack((label, old_test[i][1])) 34 35 test = tuple_dataset.TupleDataset(img, label)
学習部分も含めたコードは以下になります.
python
1def main(): 2 gane = [64, 64, 128, 128, 256, 256, 256, 512, 512, 512, 512, 512, 512] 3 4 # 抽出するデータラベル 5 mask_list = [4, 30, 55, 72, 95, 1, 32, 67, 73, 91] 6 7 batchsize = 32 8 epoch = 300 9 learnrate = 0.05 10 gpu = 0 11 out = "result" 12 13 print('Using CIFAR100 dataset.') 14 # クラス数を設定 15 class_labels = len(mask_list) 16 # cifar100を全データ格納 17 old_train, old_test = get_cifar100() 18 19 # 学習用データを抽出 20 count = 0 21 img = None 22 for i in range(len(old_train)): 23 if np.isin(old_train[i][1], mask_list): 24 if count == 0: 25 img = old_train[i][0] 26 label = old_train[i][1] 27 count += 1 28 else: 29 img = np.vstack((img, old_train[i][0])) 30 label = np.hstack((label, old_train[i][1])) 31 32 train = tuple_dataset.TupleDataset(img, label) 33 34 # 評価用データを抽出 35 count = 0 36 img = None 37 for i in range(len(old_test)): 38 if np.isin(old_test[i][1], mask_list): 39 if count == 0: 40 img = old_train[i][0] 41 label = old_train[i][1] 42 count += 1 43 else: 44 img = np.vstack((img, old_test[i][0])) 45 label = np.hstack((label, old_test[i][1])) 46 47 test = tuple_dataset.TupleDataset(img, label) 48 49 model = L.Classifier(VGG(gane, class_labels)) 50 51 if gpu >= 0: 52 # Make a specified GPU current 53 chainer.cuda.get_device_from_id(gpu).use() 54 model.to_gpu() # Copy the model to the GPU 55 56 optimizer = chainer.optimizers.MomentumSGD(learnrate) 57 optimizer.setup(model) 58 optimizer.add_hook(chainer.optimizer.WeightDecay(5e-4)) 59 60 train_iter = chainer.iterators.SerialIterator(train, batchsize) 61 test_iter = chainer.iterators.SerialIterator(test, batchsize, 62 repeat=False, shuffle=False) 63 # Set up a trainer 64 updater = training.StandardUpdater(train_iter, optimizer, device=gpu) 65 trainer = training.Trainer(updater, (epoch, 'epoch'), out=out) 66 67 # Evaluate the model with the test dataset for each epoch 68 trainer.extend(extensions.Evaluator(test_iter, model, device=gpu)) 69 70 # Reduce the learning rate by half every 25 epochs. 71 trainer.extend(extensions.ExponentialShift('lr', 0.5), 72 trigger=(25, 'epoch')) 73 74 # Dump a computational graph from 'loss' variable at the first iteration 75 # The "main" refers to the target link of the "main" optimizer. 76 trainer.extend(extensions.dump_graph('main/loss')) 77 78 # Take a snapshot at each epoch 79 trainer.extend(extensions.snapshot(), trigger=(epoch, 'epoch')) 80 81 # Write a log of evaluation statistics for each epoch 82 trainer.extend(extensions.LogReport()) 83 84 trainer.extend(extensions.PrintReport( 85 ['epoch', 'main/loss', 'validation/main/loss', 86 'main/accuracy', 'validation/main/accuracy', 'elapsed_time'])) 87 88 trainer.run() 89 90if __name__ == '__main__': 91 main()
エラー文は以下になります.
--------------------------------------------------------------------------- ValueError Traceback (most recent call last) <ipython-input-4-eb3fae69fa84> in <module>() 224 225 if __name__ == '__main__': --> 226 main() <ipython-input-4-eb3fae69fa84> in main() 145 print(len(label)) 146 print(label.ndim) --> 147 train = tuple_dataset.TupleDataset(img, label) 148 149 count = 0 /usr/local/lib/python3.6/dist-packages/chainer/datasets/tuple_dataset.py in __init__(self, *datasets) 35 if len(dataset) != length: 36 raise ValueError( ---> 37 'dataset of the index {} has a wrong length'.format(i)) 38 self._datasets = datasets 39 self._length = length ValueError: dataset of the index 1 has a wrong length
あなたの回答
tips
プレビュー