TensorFlowとtflearnを使い、ネットワークを構築しています。
ValueError: Cannot feed value of shape (2, 4) for Tensor u'InputData/X:0', which has shape '(?, 2, 4, 104)'
とエラーがでました。
Tracebackには、
Traceback (most recent call last): File "cnn.py", line 16, in <module> model.fit(trainDataSet, trainLabel, n_epoch=100, batch_size=32, validation_set=0.1, show_metric=True) File "/Users/xxx/anaconda/xxx/lib/python2.7/site-packages/tflearn/models/dnn.py", line 216, in fit callbacks=callbacks) File "/Users/xxx/anaconda/xxx/lib/python2.7/site-packages/tflearn/helpers/trainer.py", line 339, in fit show_metric) File "/Users/xxx/anaconda/xxx/lib/python2.7/site-packages/tflearn/helpers/trainer.py", line 818, in _train feed_batch) File "/Users/xxx/anaconda/xxx/lib/python2.7/site-packages/tensorflow/python/client/session.py", line 929, in run run_metadata_ptr) File "/Users/xxx/anaconda/xxx/lib/python2.7/site-packages/tensorflow/python/client/session.py", line 1128, in _run str(subfeed_t.get_shape()))) ValueError: Cannot feed value of shape (2, 4) for Tensor u'InputData/X:0', which has shape '(?, 2, 4, 104)'
とでます。全文は
# coding: utf-8 import tensorflow as tf import tflearn from tflearn.layers.core import input_data,dropout,fully_connected from tflearn.layers.conv import conv_2d, max_pool_2d from tflearn.layers.normalization import local_response_normalization from tflearn.layers.estimator import regression import pandas as pd import numpy as np from sklearn import metrics tf.reset_default_graph() net = input_data(shape=[2, 4, 104]) net = conv_2d(net, 4, 16, activation='relu') net = max_pool_2d(net, 1) net = tflearn.activations.relu(net) net = dropout(net, 0.5) net = tflearn.fully_connected(net, 10, activation='softmax') net = tflearn.regression(net, optimizer='adam', learning_rate=0.5, loss='categorical_crossentropy') model = tflearn.DNN(net) trainDataSet = [[0.25,0.25,1,1],[0,0,1,1],[0.25,0.25,1,1]] trainLabel = [[0,1],[0,1],[1,0]] model.fit(trainDataSet, trainLabel, n_epoch=100, batch_size=32, validation_set=0.1, show_metric=True)
と書きました。何が問題なのでしょうか?
回答1件
あなたの回答
tips
プレビュー