質問をすることでしか得られない、回答やアドバイスがある。

15分調べてもわからないことは、質問しよう!

ただいまの
回答率

90.51%

  • Python

    11753questions

    Pythonは、コードの読みやすさが特徴的なプログラミング言語の1つです。 強い型付け、動的型付けに対応しており、後方互換性がないバージョン2系とバージョン3系が使用されています。 商用製品の開発にも無料で使用でき、OSだけでなく仮想環境にも対応。Unicodeによる文字列操作をサポートしているため、日本語処理も標準で可能です。

  • Python 3.x

    9841questions

    Python 3はPythonプログラミング言語の最新バージョンであり、2008年12月3日にリリースされました。

  • Keras

    473questions

Kerasで文章生成を行う際のメモリーエラーを回避したい

解決済

回答 2

投稿

  • 評価
  • クリップ 0
  • VIEW 395

nuii_

score 3

 前提・実現したいこと

KerasでLSTMを使い日本語文の生成を行いたいと考えています。
コードはKerasのサンプルコードを流用し、学習データに13万字程度の分かち書きをした日本語文章を使用します。
とりあえずメモリーエラーを回避して1回動かしたいので、解決策を知りたいです。

 発生している問題・エラーメッセージ

  File "Sample.py", line 53, in <module>
    x = np.zeros((len(sentences), maxlen, len(chars)), dtype=np.bool)
MemoryError

 該当のソースコード

# -*- coding: utf-8 -*-
'''Example script to generate text from Nietzsche's writings.
At least 20 epochs are required before the generated text
starts sounding coherent.
It is recommended to run this script on GPU, as recurrent
networks are quite computationally intensive.
If you try this script on new data, make sure your corpus
has at least ~100k characters. ~1M is better.
'''

from __future__ import print_function
from keras.callbacks import LambdaCallback
from keras.models import Sequential
from keras.layers import Dense
from keras.layers import LSTM
from keras.optimizers import RMSprop
from keras.utils.data_utils import get_file
import numpy as np
import random
import sys
import io

with io.open('Text.txt', 'r', encoding='utf-8') as f:
    text = f.read()
print('corpus length:', len(text))


chars = sorted(list(set(text)))
print('total chars:', len(chars))
char_indices = dict((c, i) for i, c in enumerate(chars))
indices_char = dict((i, c) for i, c in enumerate(chars))

# cut the text in semi-redundant sequences of maxlen characters
maxlen = 40
step = 3
sentences = []
next_chars = []
for i in range(0, len(text) - maxlen, step):
    sentences.append(text[i: i + maxlen])
    next_chars.append(text[i + maxlen])
print('nb sequences:', len(sentences))

print('Vectorization...')
x = np.zeros((len(sentences), maxlen, len(chars)), dtype=np.bool)
y = np.zeros((len(sentences), len(chars)), dtype=np.bool)
for i, sentence in enumerate(sentences):
    for t, char in enumerate(sentence):
        x[i, t, char_indices[char]] = 1
    y[i, char_indices[next_chars[i]]] = 1


# build the model: a single LSTM
print('Build model...')
model = Sequential()
model.add(LSTM(128, input_shape=(maxlen, len(chars))))
model.add(Dense(len(chars), activation='softmax'))

optimizer = RMSprop(lr=0.01)
model.compile(loss='categorical_crossentropy', optimizer=optimizer)


def sample(preds, temperature=1.0):
    # helper function to sample an index from a probability array
    preds = np.asarray(preds).astype('float64')
    preds = np.log(preds) / temperature
    exp_preds = np.exp(preds)
    preds = exp_preds / np.sum(exp_preds)
    probas = np.random.multinomial(1, preds, 1)
    return np.argmax(probas)


def on_epoch_end(epoch, _):
    # Function invoked at end of each epoch. Prints generated text.
    print()
    print('----- Generating text after Epoch: %d' % epoch)

    start_index = random.randint(0, len(text) - maxlen - 1)
    for diversity in [0.2, 0.5, 1.0, 1.2]:
        print('----- diversity:', diversity)

        generated = ''
        sentence = text[start_index: start_index + maxlen]
        generated += sentence
        print('----- Generating with seed: "' + sentence + '"')
        sys.stdout.write(generated)

        for i in range(400):
            x_pred = np.zeros((1, maxlen, len(chars)))
            for t, char in enumerate(sentence):
                x_pred[0, t, char_indices[char]] = 1.

            preds = model.predict(x_pred, verbose=0)[0]
            next_index = sample(preds, diversity)
            next_char = indices_char[next_index]

            generated += next_char
            sentence = sentence[1:] + next_char

            sys.stdout.write(next_char)
            sys.stdout.flush()
        print()

print_callback = LambdaCallback(on_epoch_end=on_epoch_end)

model.fit(x, y,
          batch_size=128,
          epochs=60,
callbacks=[print_callback])

 環境

Python 3.6.6
Anaconda 4.5.11
Windows 8.1
GPU版TensorFlow

  • 気になる質問をクリップする

    クリップした質問は、後からいつでもマイページで確認できます。

    またクリップした質問に回答があった際、通知やメールを受け取ることができます。

    クリップを取り消します

  • 良い質問の評価を上げる

    以下のような質問は評価を上げましょう

    • 質問内容が明確
    • 自分も答えを知りたい
    • 質問者以外のユーザにも役立つ

    評価が高い質問は、TOPページの「注目」タブのフィードに表示されやすくなります。

    質問の評価を上げたことを取り消します

  • 評価を下げられる数の上限に達しました

    評価を下げることができません

    • 1日5回まで評価を下げられます
    • 1日に1ユーザに対して2回まで評価を下げられます

    質問の評価を下げる

    teratailでは下記のような質問を「具体的に困っていることがない質問」、「サイトポリシーに違反する質問」と定義し、推奨していません。

    • プログラミングに関係のない質問
    • やってほしいことだけを記載した丸投げの質問
    • 問題・課題が含まれていない質問
    • 意図的に内容が抹消された質問
    • 広告と受け取られるような投稿

    評価が下がると、TOPページの「アクティブ」「注目」タブのフィードに表示されにくくなります。

    質問の評価を下げたことを取り消します

    この機能は開放されていません

    評価を下げる条件を満たしてません

    評価を下げる理由を選択してください

    詳細な説明はこちら

    上記に当てはまらず、質問内容が明確になっていない質問には「情報の追加・修正依頼」機能からコメントをしてください。

    質問の評価を下げる機能の利用条件

    この機能を利用するためには、以下の事項を行う必要があります。

回答 2

checkベストアンサー

+1

np.zeros((len(sentences), maxlen, len(chars)), dtype=np.bool)のshapeが半端じゃなく大きいのかと。

日本語は英語(翻訳版みたいですね)と違って文字の種類が何万もありますから、そのまま動かすのは厳しいはずです。

とりあえずメモリーエラーを回避して1回動かしたい

英語のデータを使ってください。元のコードをそのまま動かすのが確実です。

それでも動かなければ、根本的にこういうことをするのにはスペックの低すぎるマシンを使っている可能性があります(必要メモリ量は確認していませんが)。

投稿

編集

  • 回答の評価を上げる

    以下のような回答は評価を上げましょう

    • 正しい回答
    • わかりやすい回答
    • ためになる回答

    評価が高い回答ほどページの上位に表示されます。

  • 回答の評価を下げる

    下記のような回答は推奨されていません。

    • 間違っている回答
    • 質問の回答になっていない投稿
    • スパムや攻撃的な表現を用いた投稿

    評価を下げる際はその理由を明確に伝え、適切な回答に修正してもらいましょう。

  • 2018/10/11 18:38

    元コードでの実行を試したところ問題なく動いたため、学習データの見直しなどを行いたいと思います。
    回答ありがとうございました。

    キャンセル

+1

該当の文の前で

print(len(sentences), maxlen, len(chars))


とかして、自分がいったいどのぐらいの大きさの配列を作ろうとしているのか確認しましたか?

np.zeros((len(sentences), maxlen, len(chars)), dtype=np.bool)


した時にそれがどのぐらいの大きさの配列になりそうなのか、考えましたか?

投稿

  • 回答の評価を上げる

    以下のような回答は評価を上げましょう

    • 正しい回答
    • わかりやすい回答
    • ためになる回答

    評価が高い回答ほどページの上位に表示されます。

  • 回答の評価を下げる

    下記のような回答は推奨されていません。

    • 間違っている回答
    • 質問の回答になっていない投稿
    • スパムや攻撃的な表現を用いた投稿

    評価を下げる際はその理由を明確に伝え、適切な回答に修正してもらいましょう。

  • 2018/10/11 18:38

    配列が大きくなりすぎてしまうので学習データの見直しをしようと思います。
    回答ありがとうございました。

    キャンセル

同じタグがついた質問を見る

  • Python

    11753questions

    Pythonは、コードの読みやすさが特徴的なプログラミング言語の1つです。 強い型付け、動的型付けに対応しており、後方互換性がないバージョン2系とバージョン3系が使用されています。 商用製品の開発にも無料で使用でき、OSだけでなく仮想環境にも対応。Unicodeによる文字列操作をサポートしているため、日本語処理も標準で可能です。

  • Python 3.x

    9841questions

    Python 3はPythonプログラミング言語の最新バージョンであり、2008年12月3日にリリースされました。

  • Keras

    473questions