質問をすることでしか得られない、回答やアドバイスがある。

15分調べてもわからないことは、質問しよう!

新規登録して質問してみよう
ただいま回答率
87.20%
Keras

Kerasは、TheanoやTensorFlow/CNTK対応のラッパーライブラリです。DeepLearningの数学的部分を短いコードでネットワークとして表現することが可能。DeepLearningの最新手法を迅速に試すことができます。

Python 3.x

Python 3はPythonプログラミング言語の最新バージョンであり、2008年12月3日にリリースされました。

Python

Pythonは、コードの読みやすさが特徴的なプログラミング言語の1つです。 強い型付け、動的型付けに対応しており、後方互換性がないバージョン2系とバージョン3系が使用されています。 商用製品の開発にも無料で使用でき、OSだけでなく仮想環境にも対応。Unicodeによる文字列操作をサポートしているため、日本語処理も標準で可能です。

解決済

Kerasでのエラー

zenbo0114
zenbo0114

総合スコア53

Keras

Kerasは、TheanoやTensorFlow/CNTK対応のラッパーライブラリです。DeepLearningの数学的部分を短いコードでネットワークとして表現することが可能。DeepLearningの最新手法を迅速に試すことができます。

Python 3.x

Python 3はPythonプログラミング言語の最新バージョンであり、2008年12月3日にリリースされました。

Python

Pythonは、コードの読みやすさが特徴的なプログラミング言語の1つです。 強い型付け、動的型付けに対応しており、後方互換性がないバージョン2系とバージョン3系が使用されています。 商用製品の開発にも無料で使用でき、OSだけでなく仮想環境にも対応。Unicodeによる文字列操作をサポートしているため、日本語処理も標準で可能です。

1回答

1評価

1クリップ

557閲覧

投稿2017/12/31 09:57

import keras from keras.datasets import mnist (x_train, y_train), (x_test, y_test) = mnist.load_data() num_classes = 10 x_train = x_train.reshape(60000, 784) x_test = x_test.reshape(10000, 784) x_train = x_train.astype('float32') x_test = x_test.astype('float32') x_train /= 255 x_test /= 255 y_train = y_train.astype('int32') y_test = y_test.astype('int32') y_train = keras.utils.np_utils.to_categorical(y_train, num_classes) y_test = keras.utils.np_utils.to_categorical(y_test, num_classes) print(x_train.shape[0], 'train samples') print(x_test.shape[0], 'test samples') from keras.models import Sequential from keras.layers import Dense, Dropout, Activation from keras.optimizers import RMSprop model = Sequential() model.add(Dense(512, activation = "relu", input_shape=(784, ))) model.add(Dropout(0.2)) model.add(Dense(512, activation = "relu")) model.add(Dropout(0.2)) model.add(Dense(10, activation = "softmax")) model.compile(loss = "categorical_crossentropy", optimizer=RMSprop(), metrics=['accuracy']) batch_size = 128 epochs = 20 history = model.fit(x_train, y_train, batch_size=batch_size, epochs=epochs, verbose=1, validation_data=(x_test, y_test))

ここまでを、jupyter-notebookで書いたのですが、最後の

batch_size = 128 epochs = 20 history = model.fit(x_train, y_train, batch_size=batch_size, epochs=epochs, verbose=1, validation_data=(x_test, y_test))

を実行したところ、

--------------------------------------------------------------------------- ValueError Traceback (most recent call last) <ipython-input-24-3d17f9e6f4f4> in <module>() 3 history = model.fit(x_train, y_train, 4 batch_size=batch_size, epochs=epochs, ----> 5 verbose=1, validation_data=(x_test, y_test)) ~/anaconda3/lib/python3.6/site-packages/keras/models.py in fit(self, x, y, batch_size, epochs, verbose, callbacks, validation_split, validation_data, shuffle, class_weight, sample_weight, initial_epoch, steps_per_epoch, validation_steps, **kwargs) 958 initial_epoch=initial_epoch, 959 steps_per_epoch=steps_per_epoch, --> 960 validation_steps=validation_steps) 961 962 def evaluate(self, x, y, batch_size=32, verbose=1, ~/anaconda3/lib/python3.6/site-packages/keras/engine/training.py in fit(self, x, y, batch_size, epochs, verbose, callbacks, validation_split, validation_data, shuffle, class_weight, sample_weight, initial_epoch, steps_per_epoch, validation_steps, **kwargs) 1579 class_weight=class_weight, 1580 check_batch_axis=False, -> 1581 batch_size=batch_size) 1582 # Prepare validation data. 1583 do_validation = False ~/anaconda3/lib/python3.6/site-packages/keras/engine/training.py in _standardize_user_data(self, x, y, sample_weight, class_weight, check_batch_axis, batch_size) 1416 output_shapes, 1417 check_batch_axis=False, -> 1418 exception_prefix='target') 1419 sample_weights = _standardize_sample_weights(sample_weight, 1420 self._feed_output_names) ~/anaconda3/lib/python3.6/site-packages/keras/engine/training.py in _standardize_input_data(data, names, shapes, check_batch_axis, exception_prefix) 139 ' to have ' + str(len(shapes[i])) + 140 ' dimensions, but got array with shape ' + --> 141 str(array.shape)) 142 for j, (dim, ref_dim) in enumerate(zip(array.shape, shapes[i])): 143 if not j and not check_batch_axis: ValueError: Error when checking target: expected dense_6 to have 2 dimensions, but got array with shape (60000, 10, 10, 10, 10)

と、なりました。
解決方法をお教えください。
回答お待ちしております。

良い質問の評価を上げる

以下のような質問は評価を上げましょう

  • 質問内容が明確
  • 自分も答えを知りたい
  • 質問者以外のユーザにも役立つ

評価が高い質問は、TOPページの「注目」タブのフィードに表示されやすくなります。

気になる質問をクリップする

クリップした質問は、後からいつでもマイページで確認できます。

またクリップした質問に回答があった際、通知やメールを受け取ることができます。

teratailでは下記のような質問を「具体的に困っていることがない質問」、「サイトポリシーに違反する質問」と定義し、推奨していません。

  • プログラミングに関係のない質問
  • やってほしいことだけを記載した丸投げの質問
  • 問題・課題が含まれていない質問
  • 意図的に内容が抹消された質問
  • 過去に投稿した質問と同じ内容の質問
  • 広告と受け取られるような投稿

評価を下げると、トップページの「アクティブ」「注目」タブのフィードに表示されにくくなります。

まだ回答がついていません

会員登録して回答してみよう

15分調べてもわからないことは
teratailで質問しよう!

ただいまの回答率
87.20%

質問をまとめることで
思考を整理して素早く解決

テンプレート機能で
簡単に質問をまとめる

質問する

関連した質問

同じタグがついた質問を見る

Keras

Kerasは、TheanoやTensorFlow/CNTK対応のラッパーライブラリです。DeepLearningの数学的部分を短いコードでネットワークとして表現することが可能。DeepLearningの最新手法を迅速に試すことができます。

Python 3.x

Python 3はPythonプログラミング言語の最新バージョンであり、2008年12月3日にリリースされました。

Python

Pythonは、コードの読みやすさが特徴的なプログラミング言語の1つです。 強い型付け、動的型付けに対応しており、後方互換性がないバージョン2系とバージョン3系が使用されています。 商用製品の開発にも無料で使用でき、OSだけでなく仮想環境にも対応。Unicodeによる文字列操作をサポートしているため、日本語処理も標準で可能です。