質問をすることでしか得られない、回答やアドバイスがある。

15分調べてもわからないことは、質問しよう!

新規登録して質問してみよう
ただいま回答率
87.20%
Anaconda

Anacondaは、Python本体とPythonで利用されるライブラリを一括でインストールできるパッケージです。環境構築が容易になるため、Python開発者間ではよく利用されており、商用目的としても利用できます。

YOLO

YOLOとは、画像検出および認識用ニューラルネットワークです。CベースのDarknetというフレームワークを用いて、画像や動画からオブジェクトを検出。リアルタイムでそれが何になるのかを認識し、分類することができます。

Spyder

Spyderとは、Pythonで分析するために作られたIDEです。プログラムの編集・実行・入力補完・デバッグなどの基本的なIDE機能の他、科学用途の計算をするために要するライブラリも装備。公式・サードパーティ製のプラグインもあり、機能を拡張することもできます。

Windows

Windowsは、マイクロソフト社が開発したオペレーティングシステムです。当初は、MS-DOSに変わるOSとして開発されました。 GUIを採用し、主にインテル系のCPUを搭載したコンピューターで動作します。Windows系OSのシェアは、90%を超えるといわれています。 パソコン用以外に、POSシステムやスマートフォンなどの携帯端末用、サーバ用のOSもあります。

Python

Pythonは、コードの読みやすさが特徴的なプログラミング言語の1つです。 強い型付け、動的型付けに対応しており、後方互換性がないバージョン2系とバージョン3系が使用されています。 商用製品の開発にも無料で使用でき、OSだけでなく仮想環境にも対応。Unicodeによる文字列操作をサポートしているため、日本語処理も標準で可能です。

解決済

エラー内容:指定されたパスが見つかりません。

hona_tan
hona_tan

総合スコア40

Anaconda

Anacondaは、Python本体とPythonで利用されるライブラリを一括でインストールできるパッケージです。環境構築が容易になるため、Python開発者間ではよく利用されており、商用目的としても利用できます。

YOLO

YOLOとは、画像検出および認識用ニューラルネットワークです。CベースのDarknetというフレームワークを用いて、画像や動画からオブジェクトを検出。リアルタイムでそれが何になるのかを認識し、分類することができます。

Spyder

Spyderとは、Pythonで分析するために作られたIDEです。プログラムの編集・実行・入力補完・デバッグなどの基本的なIDE機能の他、科学用途の計算をするために要するライブラリも装備。公式・サードパーティ製のプラグインもあり、機能を拡張することもできます。

Windows

Windowsは、マイクロソフト社が開発したオペレーティングシステムです。当初は、MS-DOSに変わるOSとして開発されました。 GUIを採用し、主にインテル系のCPUを搭載したコンピューターで動作します。Windows系OSのシェアは、90%を超えるといわれています。 パソコン用以外に、POSシステムやスマートフォンなどの携帯端末用、サーバ用のOSもあります。

Python

Pythonは、コードの読みやすさが特徴的なプログラミング言語の1つです。 強い型付け、動的型付けに対応しており、後方互換性がないバージョン2系とバージョン3系が使用されています。 商用製品の開発にも無料で使用でき、OSだけでなく仮想環境にも対応。Unicodeによる文字列操作をサポートしているため、日本語処理も標準で可能です。

1回答

0評価

0クリップ

181閲覧

投稿2022/05/19 08:04

現在、野菜の物体検出を試みており、その過程でエラーが起きてしまいこまっています。
リンク内容このサイトに沿って実行しています。
YOLOv3の入力画像サイズについての部分から上手くいきません。

エラー内容

$ tensorboard --logdir=</logs/000> --host 0.0.0.0 指定されたパスが見つかりません。

プログラム

Retrain the YOLO model for your own dataset. """ import numpy as np import keras.backend as K from keras.layers import Input, Lambda from keras.models import Model from keras.optimizers import Adam from keras.callbacks import TensorBoard, ModelCheckpoint, ReduceLROnPlateau, EarlyStopping from yolo3.model import preprocess_true_boxes, yolo_body, tiny_yolo_body, yolo_loss from yolo3.utils import get_random_data def _main(): annotation_path = '2007_train.txt' log_dir = 'logs/000/' classes_path = 'model_data/voc_classes.txt' anchors_path = 'model_data/yolo_anchors.txt' class_names = get_classes(classes_path) num_classes = len(class_names) anchors = get_anchors(anchors_path) input_shape = (412,412) # multiple of 32, hw is_tiny_version = len(anchors)==6 # default setting if is_tiny_version: model = create_tiny_model(input_shape, anchors, num_classes, freeze_body=2, weights_path='model_data/tiny_yolo_weights.h5') else: model = create_model(input_shape, anchors, num_classes, freeze_body=2, weights_path='model_data/yolo_weights.h5') # make sure you know what you freeze logging = TensorBoard(log_dir=log_dir) checkpoint = ModelCheckpoint(log_dir + 'ep{epoch:03d}-loss{loss:.3f}-val_loss{val_loss:.3f}.h5', monitor='val_loss', save_weights_only=True, save_best_only=True, period=3) reduce_lr = ReduceLROnPlateau(monitor='val_loss', factor=0.1, patience=3, verbose=1) early_stopping = EarlyStopping(monitor='val_loss', min_delta=0, patience=10, verbose=1) val_split = 0.2 #0.1 with open(annotation_path, encoding="utf-8_sig") as f: lines = f.readlines() np.random.seed(10101) np.random.shuffle(lines) np.random.seed(None) num_val = int(len(lines)*val_split) num_train = len(lines) - num_val # Train with frozen layers first, to get a stable loss. # Adjust num epochs to your dataset. This step is enough to obtain a not bad model. if True: model.compile(optimizer=Adam(lr=1e-3), loss={ # use custom yolo_loss Lambda layer. 'yolo_loss': lambda y_true, y_pred: y_pred}) batch_size = 8 #32 print('Train on {} samples, val on {} samples, with batch size {}.'.format(num_train, num_val, batch_size)) model.fit_generator(data_generator_wrapper(lines[:num_train], batch_size, input_shape, anchors, num_classes), steps_per_epoch=max(1, num_train//batch_size), validation_data=data_generator_wrapper(lines[num_train:], batch_size, input_shape, anchors, num_classes), validation_steps=max(1, num_val//batch_size), epochs=50, initial_epoch=0, callbacks=[logging, checkpoint]) model.save_weights(log_dir + 'trained_weights_stage_1.h5') # Unfreeze and continue training, to fine-tune. # Train longer if the result is not good. if True: for i in range(len(model.layers)): model.layers[i].trainable = True model.compile(optimizer=Adam(lr=1e-4), loss={'yolo_loss': lambda y_true, y_pred: y_pred}) # recompile to apply the change print('Unfreeze all of the layers.') batch_size = 4 # note that more GPU memory is required after unfreezing the body print('Train on {} samples, val on {} samples, with batch size {}.'.format(num_train, num_val, batch_size)) model.fit_generator(data_generator_wrapper(lines[:num_train], batch_size, input_shape, anchors, num_classes), steps_per_epoch=max(1, num_train//batch_size), validation_data=data_generator_wrapper(lines[num_train:], batch_size, input_shape, anchors, num_classes), validation_steps=max(1, num_val//batch_size), epochs=100, initial_epoch=50, callbacks=[logging, checkpoint, reduce_lr, early_stopping]) model.save_weights(log_dir + 'trained_weights_final.h5') # Further training if needed. def get_classes(classes_path): '''loads the classes''' with open(classes_path, encoding="utf-8_sig") as f: class_names = f.readlines() class_names = [c.strip() for c in class_names] return class_names def get_anchors(anchors_path): '''loads the anchors from a file''' with open(anchors_path, encoding="utf-8_sig") as f: anchors = f.readline() anchors = [float(x) for x in anchors.split(',')] return np.array(anchors).reshape(-1, 2) def create_model(input_shape, anchors, num_classes, load_pretrained=True, freeze_body=2, weights_path='model_data/yolo_weights.h5'): '''create the training model''' K.clear_session() # get a new session image_input = Input(shape=(None, None, 3)) h, w = input_shape num_anchors = len(anchors) y_true = [Input(shape=(h//{0:32, 1:16, 2:8}[l], w//{0:32, 1:16, 2:8}[l], \ num_anchors//3, num_classes+5)) for l in range(3)] model_body = yolo_body(image_input, num_anchors//3, num_classes) print('Create YOLOv3 model with {} anchors and {} classes.'.format(num_anchors, num_classes)) if load_pretrained: model_body.load_weights(weights_path, by_name=True, skip_mismatch=True) print('Load weights {}.'.format(weights_path)) if freeze_body in [1, 2]: # Freeze darknet53 body or freeze all but 3 output layers. num = (185, len(model_body.layers)-3)[freeze_body-1] for i in range(num): model_body.layers[i].trainable = False print('Freeze the first {} layers of total {} layers.'.format(num, len(model_body.layers))) model_loss = Lambda(yolo_loss, output_shape=(1,), name='yolo_loss', arguments={'anchors': anchors, 'num_classes': num_classes, 'ignore_thresh': 0.5})( [*model_body.output, *y_true]) model = Model([model_body.input, *y_true], model_loss) return model def create_tiny_model(input_shape, anchors, num_classes, load_pretrained=True, freeze_body=2, weights_path='model_data/tiny_yolo_weights.h5'): '''create the training model, for Tiny YOLOv3''' K.clear_session() # get a new session image_input = Input(shape=(None, None, 3)) h, w = input_shape num_anchors = len(anchors) y_true = [Input(shape=(h//{0:32, 1:16}[l], w//{0:32, 1:16}[l], \ num_anchors//2, num_classes+5)) for l in range(2)] model_body = tiny_yolo_body(image_input, num_anchors//2, num_classes) print('Create Tiny YOLOv3 model with {} anchors and {} classes.'.format(num_anchors, num_classes)) if load_pretrained: model_body.load_weights(weights_path, by_name=True, skip_mismatch=True) print('Load weights {}.'.format(weights_path)) if freeze_body in [1, 2]: # Freeze the darknet body or freeze all but 2 output layers. num = (20, len(model_body.layers)-2)[freeze_body-1] for i in range(num): model_body.layers[i].trainable = False print('Freeze the first {} layers of total {} layers.'.format(num, len(model_body.layers))) model_loss = Lambda(yolo_loss, output_shape=(1,), name='yolo_loss', arguments={'anchors': anchors, 'num_classes': num_classes, 'ignore_thresh': 0.7})( [*model_body.output, *y_true]) model = Model([model_body.input, *y_true], model_loss) return model def data_generator(annotation_lines, batch_size, input_shape, anchors, num_classes): '''data generator for fit_generator''' n = len(annotation_lines) i = 0 while True: image_data = [] box_data = [] for b in range(batch_size): if i==0: np.random.shuffle(annotation_lines) image, box = get_random_data(annotation_lines[i], input_shape, random=True) image_data.append(image) box_data.append(box) i = (i+1) % n image_data = np.array(image_data) box_data = np.array(box_data) y_true = preprocess_true_boxes(box_data, input_shape, anchors, num_classes) yield [image_data, *y_true], np.zeros(batch_size) def data_generator_wrapper(annotation_lines, batch_size, input_shape, anchors, num_classes): n = len(annotation_lines) if n==0 or batch_size<=0: return None return data_generator(annotation_lines, batch_size, input_shape, anchors, num_classes) if __name__ == '__main__': _main()

ファイル名や場所は何回も確認しあっていると思います。
解決策を教えていただけると嬉しいです。

PC:Windows
仮想環境:Anaconda

良い質問の評価を上げる

以下のような質問は評価を上げましょう

  • 質問内容が明確
  • 自分も答えを知りたい
  • 質問者以外のユーザにも役立つ

評価が高い質問は、TOPページの「注目」タブのフィードに表示されやすくなります。

気になる質問をクリップする

クリップした質問は、後からいつでもマイページで確認できます。

またクリップした質問に回答があった際、通知やメールを受け取ることができます。

teratailでは下記のような質問を「具体的に困っていることがない質問」、「サイトポリシーに違反する質問」と定義し、推奨していません。

  • プログラミングに関係のない質問
  • やってほしいことだけを記載した丸投げの質問
  • 問題・課題が含まれていない質問
  • 意図的に内容が抹消された質問
  • 過去に投稿した質問と同じ内容の質問
  • 広告と受け取られるような投稿

評価を下げると、トップページの「アクティブ」「注目」タブのフィードに表示されにくくなります。

Zuishin

2022/05/19 08:12

> log_dir = 'logs/000/' log_dir = '/logs/000/' ではありませんか?
melian

2022/05/19 08:14

参照されている記事には、 tensorboard --logdir=</logs/000のフルパス> --host 0.0.0.0 と書かれていますので、"<logs/000のフルパス>" の部分を logs/000 ディレクトリの絶対パス名に置き換える必要があります。
Zuishin

2022/05/19 08:17 編集

あと、おそらくそのディレクトリには適切な権限が設定されていないので、それを設定する必要があるかもしれません。

まだ回答がついていません

会員登録して回答してみよう

15分調べてもわからないことは
teratailで質問しよう!

ただいまの回答率
87.20%

質問をまとめることで
思考を整理して素早く解決

テンプレート機能で
簡単に質問をまとめる

質問する

関連した質問

同じタグがついた質問を見る

Anaconda

Anacondaは、Python本体とPythonで利用されるライブラリを一括でインストールできるパッケージです。環境構築が容易になるため、Python開発者間ではよく利用されており、商用目的としても利用できます。

YOLO

YOLOとは、画像検出および認識用ニューラルネットワークです。CベースのDarknetというフレームワークを用いて、画像や動画からオブジェクトを検出。リアルタイムでそれが何になるのかを認識し、分類することができます。

Spyder

Spyderとは、Pythonで分析するために作られたIDEです。プログラムの編集・実行・入力補完・デバッグなどの基本的なIDE機能の他、科学用途の計算をするために要するライブラリも装備。公式・サードパーティ製のプラグインもあり、機能を拡張することもできます。

Windows

Windowsは、マイクロソフト社が開発したオペレーティングシステムです。当初は、MS-DOSに変わるOSとして開発されました。 GUIを採用し、主にインテル系のCPUを搭載したコンピューターで動作します。Windows系OSのシェアは、90%を超えるといわれています。 パソコン用以外に、POSシステムやスマートフォンなどの携帯端末用、サーバ用のOSもあります。

Python

Pythonは、コードの読みやすさが特徴的なプログラミング言語の1つです。 強い型付け、動的型付けに対応しており、後方互換性がないバージョン2系とバージョン3系が使用されています。 商用製品の開発にも無料で使用でき、OSだけでなく仮想環境にも対応。Unicodeによる文字列操作をサポートしているため、日本語処理も標準で可能です。