質問をすることでしか得られない、回答やアドバイスがある。

15分調べてもわからないことは、質問しよう!

ただいまの
回答率

90.61%

  • Python

    7515questions

    Pythonは、コードの読みやすさが特徴的なプログラミング言語の1つです。 強い型付け、動的型付けに対応しており、後方互換性がないバージョン2系とバージョン3系が使用されています。 商用製品の開発にも無料で使用でき、OSだけでなく仮想環境にも対応。Unicodeによる文字列操作をサポートしているため、日本語処理も標準で可能です。

  • TensorFlow

    639questions

[Python]機械学習について

解決済

回答 1

投稿 編集

  • 評価
  • クリップ 0
  • VIEW 476

s0ra

score 30

お世話になっています。
下のソースコードを実行させたところ
NotADirectoryError: [Errno 20] Not a directory: '/Users/data/.DS_Store'
というエラーが出ます。調べても全く出てこないのでどなたかご教授願います。
下のソースコードはここから取ってきたものです。

import os
import cv2
import numpy as np
import tensorflow as tf

path=os.getcwd()+'/data/'
class_count = 0
folder_list=os.listdir(path)

for folder in folder_list:
  class_count = class_count+1

NUM_CLASSES = class_count
IMAGE_SIZE = 28
IMAGE_PIXELS = IMAGE_SIZE*IMAGE_SIZE*3

flags = tf.app.flags
FLAGS = flags.FLAGS
flags.DEFINE_string('label', 'label.txt', 'File name of label')
flags.DEFINE_string('train_dir', './tmp/data', 'Directory to put the training data.')
# max_step、sbatch_size、learning_rateの各パラメータは学習データによって適切な値を設定する
flags.DEFINE_integer('max_steps', 100, 'Number of steps to run trainer.')
flags.DEFINE_integer('batch_size', 20, 'Batch size'
                     'Must divide evenly into the dataset sizes.')
flags.DEFINE_float('learning_rate', 1e-4, 'Initial learning rate.')

# 予測モデルを作成する関数
def inference(images_placeholder, keep_prob):
    # 重みを標準偏差0.1の正規分布で初期化
    def weight_variable(shape):
      initial = tf.truncated_normal(shape, stddev=0.1)
      return tf.Variable(initial)

    # バイアスを標準偏差0.1の正規分布で初期化
    def bias_variable(shape):
      initial = tf.constant(0.1, shape=shape)
      return tf.Variable(initial)

    # 畳み込み層の作成
    def conv2d(x, W):
      return tf.nn.conv2d(x, W, strides=[1, 1, 1, 1], padding='SAME')

    # プーリング層の作成
    def max_pool_2x2(x):
      return tf.nn.max_pool(x, ksize=[1, 2, 2, 1],
                            strides=[1, 2, 2, 1], padding='SAME')

    # 入力を28x28x3に変形
    x_image = tf.reshape(images_placeholder, [-1, 28, 28, 3])

    # 畳み込み層1の作成
    with tf.name_scope('conv1') as scope:
        W_conv1 = weight_variable([5, 5, 3, 32])
        b_conv1 = bias_variable([32])
        h_conv1 = tf.nn.relu(conv2d(x_image, W_conv1) + b_conv1)

    # プーリング層1の作成
    with tf.name_scope('pool1') as scope:
        h_pool1 = max_pool_2x2(h_conv1)

    # 畳み込み層2の作成
    with tf.name_scope('conv2') as scope:
        W_conv2 = weight_variable([5, 5, 32, 64])
        b_conv2 = bias_variable([64])
        h_conv2 = tf.nn.relu(conv2d(h_pool1, W_conv2) + b_conv2)

    # プーリング層2の作成
    with tf.name_scope('pool2') as scope:
        h_pool2 = max_pool_2x2(h_conv2)

    # 全結合層1の作成
    with tf.name_scope('fc1') as scope:
        W_fc1 = weight_variable([7*7*64, 1024])
        b_fc1 = bias_variable([1024])
        h_pool2_flat = tf.reshape(h_pool2, [-1, 7*7*64])
        h_fc1 = tf.nn.relu(tf.matmul(h_pool2_flat, W_fc1) + b_fc1)
        # dropoutの設定
        h_fc1_drop = tf.nn.dropout(h_fc1, keep_prob)

    # 全結合層2の作成
    with tf.name_scope('fc2') as scope:
        W_fc2 = weight_variable([1024, NUM_CLASSES])
        b_fc2 = bias_variable([NUM_CLASSES])

    # ソフトマックス関数による正規化
    with tf.name_scope('softmax') as scope:
        y_conv=tf.nn.softmax(tf.matmul(h_fc1_drop, W_fc2) + b_fc2)

    # 各ラベルの確率のようなものを返す
    return y_conv

# lossを計算する関数
def loss(logits, labels):
    cross_entropy = -tf.reduce_sum(labels*tf.log(logits))
    tf.summary.scalar("cross_entropy", cross_entropy)
    return cross_entropy

# 訓練のOpを定義する関数
def training(loss, learning_rate):
    train_step = tf.train.AdamOptimizer(learning_rate).minimize(loss)
    return train_step

# 正解率(accuracy)を計算する関数
def accuracy(logits, labels):
    correct_prediction = tf.equal(tf.argmax(logits, 1), tf.argmax(labels, 1))
    accuracy = tf.reduce_mean(tf.cast(correct_prediction, "float"))
    tf.summary.scalar("accuracy", accuracy)
    return accuracy

if __name__ == '__main__':
    count=0
    folder_list=os.listdir(path)

    train_image = []
    train_label = []
    test_image = []
    test_label = []

    f = open(FLAGS.label, 'w')
    for folder in folder_list:
      subfolder = os.path.join(path,folder)
      file_list = os.listdir(subfolder)

      filemax = 0

      for file in file_list:
        filemax = filemax + 1

      # train : test = 9 : 1
      file_rate = int(filemax/10*9)

      i = 0

      for file in file_list:

        img = cv2.imread('./data/' + folder + '/' + file)
        img = cv2.resize(img, (IMAGE_SIZE, IMAGE_SIZE))
        if i <= file_rate:
           train_image.append(img.flatten().astype(np.float32)/255.0)
           tmp = np.zeros(NUM_CLASSES)
           tmp[int(count)] = 1
           train_label.append(tmp)
        else:
           test_image.append(img.flatten().astype(np.float32)/255.0)
           tmp = np.zeros(NUM_CLASSES)
           tmp[int(count)] = 1
           test_label.append(tmp)

        i = i + 1

      label_name = folder + '\n'
      f.write(label_name)
      count=count+1
    f.close()

    train_image = np.asarray(train_image)
    train_label = np.asarray(train_label)
    test_image = np.asarray(test_image)
    test_label = np.asarray(test_label)

    with tf.Graph().as_default():
        # 画像を入れる仮のTensor
        images_placeholder = tf.placeholder("float", shape=(None, IMAGE_PIXELS))
        # ラベルを入れる仮のTensor
        labels_placeholder = tf.placeholder("float", shape=(None, NUM_CLASSES))
        # dropout率を入れる仮のTensor
        keep_prob = tf.placeholder("float")

        # inference()を呼び出してモデルを作る
        logits = inference(images_placeholder, keep_prob)
        # loss()を呼び出して損失を計算
        loss_value = loss(logits, labels_placeholder)
        # training()を呼び出して訓練
        train_op = training(loss_value, FLAGS.learning_rate)
        # 精度の計算
        acc = accuracy(logits, labels_placeholder)

        # 保存の準備
        saver = tf.train.Saver()
        # Sessionの作成
        sess = tf.Session()
        # 変数の初期化
        sess.run(tf.initialize_all_variables())
        # TensorBoardで表示する値の設定
        summary_op = tf.summary.merge_all()
        summary_writer = tf.summary.FileWriter(FLAGS.train_dir, sess.graph)


        # 訓練の実行
        for step in range(FLAGS.max_steps):
            for i in range(int(len(train_image)/FLAGS.batch_size)):
                # batch_size分の画像に対して訓練の実行
                batch = FLAGS.batch_size*i
                # feed_dictでplaceholderに入れるデータを指定する
                sess.run(train_op, feed_dict={
                  images_placeholder: train_image[batch:batch+FLAGS.batch_size],
                  labels_placeholder: train_label[batch:batch+FLAGS.batch_size],
                  keep_prob: 0.5})

            # 1 step終わるたびに精度を計算する
            train_accuracy = sess.run(acc, feed_dict={
                images_placeholder: train_image,
                labels_placeholder: train_label,
                keep_prob: 1.0})
            print ("step %d, training accuracy %g"%(step, train_accuracy))

            # 1 step終わるたびにTensorBoardに表示する値を追加する
            summary_str = sess.run(summary_op, feed_dict={
                images_placeholder: train_image,
                labels_placeholder: train_label,
                keep_prob: 1.0})
            summary_writer.add_summary(summary_str, step)

    # 訓練が終了したらテストデータに対する精度を表示
    print ("test accuracy %g"%sess.run(acc, feed_dict={
        images_placeholder: test_image,
        labels_placeholder: test_label,
        keep_prob: 1.0}))

    # 最終的なモデルを保存
    save_path = saver.save(sess, "./model.ckpt")
  • 気になる質問をクリップする

    クリップした質問は、後からいつでもマイページで確認できます。

    またクリップした質問に回答があった際、通知やメールを受け取ることができます。

    クリップを取り消します

  • 良い質問の評価を上げる

    以下のような質問は評価を上げましょう

    • 質問内容が明確
    • 自分も答えを知りたい
    • 質問者以外のユーザにも役立つ

    評価が高い質問は、TOPページの「注目」タブのフィードに表示されやすくなります。

    質問の評価を上げたことを取り消します

  • 評価を下げられる数の上限に達しました

    評価を下げることができません

    • 1日5回まで評価を下げられます
    • 1日に1ユーザに対して2回まで評価を下げられます

    質問の評価を下げる

    teratailでは下記のような質問を「具体的に困っていることがない質問」、「サイトポリシーに違反する質問」と定義し、推奨していません。

    • プログラミングに関係のない質問
    • やってほしいことだけを記載した丸投げの質問
    • 問題・課題が含まれていない質問
    • 意図的に内容が抹消された質問
    • 広告と受け取られるような投稿

    評価が下がると、TOPページの「アクティブ」「注目」タブのフィードに表示されにくくなります。

    質問の評価を下げたことを取り消します

    この機能は開放されていません

    評価を下げる条件を満たしてません

    評価を下げる理由を選択してください

    詳細な説明はこちら

    上記に当てはまらず、質問内容が明確になっていない質問には「情報の追加・修正依頼」機能からコメントをしてください。

    質問の評価を下げる機能の利用条件

    この機能を利用するためには、以下の事項を行う必要があります。

質問への追記・修正、ベストアンサー選択の依頼

  • quiqui

    2017/11/05 18:45

    例外の名前が「読んで字のごとく」だと思うんですが

    キャンセル

  • s0ra

    2017/11/05 18:54

    いや、それは僕もわかってます。しかし、.DS_Storeを無理やり作成しても同じようなエラーが出ます。

    キャンセル

  • 退会済みユーザー

    退会済みユーザー

    2017/11/05 21:34

    Q.1何行目でエラーが出てくるかエラーメッセージに書いてありませんか?Q.2このコードのある場所のフォルダ一覧かフォルダのスクリーンショットか何かをつけてもらえませんか?

    キャンセル

  • rkhs

    2017/11/06 00:55

    .DS_Storeはフォルダ表示設定に関するメタデータを記録するための隠しファイルです。画像データが入っているフォルダだけを指定するように修正しましょう。

    キャンセル

回答 1

checkベストアンサー

+1

Not a directory: '/Users/data/.DS_Store'は、'/Users/data/.DS_Store'がディレクトリではない。というエラーです。

os.listdir(path)では、ディレクトリないの要素をリストにするので、ファイルもディレクトリのどちらともを取得します。
ですので、ディレクトリ内のディレクトリのリストを作りたい場合は、os.listdir(path)で取得した要素がディレクトリであるかチェックし、
ディレクトリでない場合はリストから削除してください。

それか、'/Users/data/.DS_Store'を削除してください。

投稿

  • 回答の評価を上げる

    以下のような回答は評価を上げましょう

    • 正しい回答
    • わかりやすい回答
    • ためになる回答

    評価が高い回答ほどページの上位に表示されます。

  • 回答の評価を下げる

    下記のような回答は推奨されていません。

    • 間違っている回答
    • 質問の回答になっていない投稿
    • スパムや攻撃的な表現を用いた投稿

    評価を下げる際はその理由を明確に伝え、適切な回答に修正してもらいましょう。

  • 2017/11/09 01:23

    folder_list = [f for f in os.listdir(path) if os.path.isdir('{0}/{1}'.format(path, f))]

    キャンセル

15分調べてもわからないことは、teratailで質問しよう!

  • ただいまの回答率 90.61%
  • 質問をまとめることで、思考を整理して素早く解決
  • テンプレート機能で、簡単に質問をまとめられる

関連した質問

同じタグがついた質問を見る

  • Python

    7515questions

    Pythonは、コードの読みやすさが特徴的なプログラミング言語の1つです。 強い型付け、動的型付けに対応しており、後方互換性がないバージョン2系とバージョン3系が使用されています。 商用製品の開発にも無料で使用でき、OSだけでなく仮想環境にも対応。Unicodeによる文字列操作をサポートしているため、日本語処理も標準で可能です。

  • TensorFlow

    639questions