質問をすることでしか得られない、回答やアドバイスがある。

15分調べてもわからないことは、質問しよう!

新規登録して質問してみよう
ただいま回答率
85.35%
PyTorch

PyTorchは、オープンソースのPython向けの機械学習ライブラリ。Facebookの人工知能研究グループが開発を主導しています。強力なGPUサポートを備えたテンソル計算、テープベースの自動微分による柔軟なニューラルネットワークの記述が可能です。

Python 3.x

Python 3はPythonプログラミング言語の最新バージョンであり、2008年12月3日にリリースされました。

Ubuntu

Ubuntuは、Debian GNU/Linuxを基盤としたフリーのオペレーティングシステムです。

Python

Pythonは、コードの読みやすさが特徴的なプログラミング言語の1つです。 強い型付け、動的型付けに対応しており、後方互換性がないバージョン2系とバージョン3系が使用されています。 商用製品の開発にも無料で使用でき、OSだけでなく仮想環境にも対応。Unicodeによる文字列操作をサポートしているため、日本語処理も標準で可能です。

Q&A

解決済

1回答

2427閲覧

pcがフリーズするため、メモリ?を開放したいです

退会済みユーザー

退会済みユーザー

総合スコア0

PyTorch

PyTorchは、オープンソースのPython向けの機械学習ライブラリ。Facebookの人工知能研究グループが開発を主導しています。強力なGPUサポートを備えたテンソル計算、テープベースの自動微分による柔軟なニューラルネットワークの記述が可能です。

Python 3.x

Python 3はPythonプログラミング言語の最新バージョンであり、2008年12月3日にリリースされました。

Ubuntu

Ubuntuは、Debian GNU/Linuxを基盤としたフリーのオペレーティングシステムです。

Python

Pythonは、コードの読みやすさが特徴的なプログラミング言語の1つです。 強い型付け、動的型付けに対応しており、後方互換性がないバージョン2系とバージョン3系が使用されています。 商用製品の開発にも無料で使用でき、OSだけでなく仮想環境にも対応。Unicodeによる文字列操作をサポートしているため、日本語処理も標準で可能です。

0グッド

0クリップ

投稿2021/12/14 07:55

編集2021/12/14 07:58

前提・実現したいこと

python3.8
ubuntu20.04
rtx3060
torch 1.10.0+cu113を使用しています

必要に応じて(並列処理)下記のコード(画像から説明文生成)を呼び出し画像から説明文生成をしていますが何度も起動しますと徐々に重くなりpcがフリーズしてしまいます。
そのため、実行するごとにメモリ?がどんどんたまり固まってしまうのではないかと考えています。
ここで質問ですが、1回1回の処理ごとにメモリを開放するようなことはできるのでしょうか。
また、別の方法がありますでしょうか。
申し訳ございません、ご教示いただけないでしょうか。

###画像から説明文生成

class Image_captioning: # Device configuration def load_image(self,color_image_path, transform=None): image = Image.open(color_image_path) image = image.resize([224, 224], Image.LANCZOS) if transform is not None: image = transform(image).unsqueeze(0) return image def text_reading(self): device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') # Model parameters (should be same as paramters in train.py) embed_size=256 hidden_size=512 num_layers=1 files = sorted(glob.glob(count_image_path)) for i, image_path in enumerate (files): # Image preprocessing transform = transforms.Compose([ transforms.ToTensor(), transforms.Normalize((0.485, 0.456, 0.406), (0.229, 0.224, 0.225))]) # Load vocabulary wrapper with open(vocab_path, 'rb') as f: vocab = pickle.load(f) # Build models encoder = EncoderCNN(embed_size).eval() # eval mode (batchnorm uses moving mean/variance) decoder = DecoderRNN(embed_size, hidden_size, len(vocab), num_layers) encoder = encoder.to(device) decoder = decoder.to(device) # Load the trained model parameters encoder.load_state_dict(torch.load(encoder_path)) decoder.load_state_dict(torch.load(decoder_path)) # Prepare an image image = self.load_image(image_path, transform) image_tensor = image.to(device) # Generate an caption from the image feature = encoder(image_tensor) sampled_ids = decoder.sample(feature) sampled_ids = sampled_ids[0].cpu().numpy() # (1, max_seq_length) -> (max_seq_length) # Convert word_ids to words sampled_caption = [] for word_id in sampled_ids: word = vocab.idx2word[word_id] sampled_caption.append(word) if word == '<end>': break sentence = ' '.join(sampled_caption) # Print out the image and the generated caption image = Image.open(image_path) description = sentence.replace('<start>',' ',1).replace('<end>',' ',1) print (description)

###main関数

def main(): m = Main() r = Run_image() executor = concurrent.futures.ProcessPoolExecutor(max_workers=60) executor.submit(m.process) r_running = False while True: if not r_running and os.path.exists(count_image_path)== True: #executor.submit(r.run)こちらがclass Image_captioningにつながる関数です executor.submit(r.run) r_running = True print(r_running) if not os.path.exists(count_image_path): r_running = False

###model

import torch import torch.nn as nn import torchvision.models as models from torch.nn.utils.rnn import pack_padded_sequence class EncoderCNN(nn.Module): def __init__(self, embed_size): """Load the pretrained ResNet-152 and replace top fc layer.""" super(EncoderCNN, self).__init__() resnet = models.resnet152(pretrained=True) modules = list(resnet.children())[:-1] # delete the last fc layer. self.resnet = nn.Sequential(*modules) self.linear = nn.Linear(resnet.fc.in_features, embed_size) self.bn = nn.BatchNorm1d(embed_size, momentum=0.01) def forward(self, images): """Extract feature vectors from input images.""" with torch.no_grad(): features = self.resnet(images) features = features.reshape(features.size(0), -1) features = self.bn(self.linear(features)) return features class DecoderRNN(nn.Module): def __init__(self, embed_size, hidden_size, vocab_size, num_layers, max_seq_length=20): """Set the hyper-parameters and build the layers.""" super(DecoderRNN, self).__init__() self.embed = nn.Embedding(vocab_size, embed_size) self.lstm = nn.LSTM(embed_size, hidden_size, num_layers, batch_first=True) self.linear = nn.Linear(hidden_size, vocab_size) self.max_seg_length = max_seq_length def forward(self, features, captions, lengths): """Decode image feature vectors and generates captions.""" embeddings = self.embed(captions) embeddings = torch.cat((features.unsqueeze(1), embeddings), 1) packed = pack_padded_sequence(embeddings, lengths, batch_first=True) hiddens, _ = self.lstm(packed) outputs = self.linear(hiddens[0]) return outputs def sample(self, features, states=None): """Generate captions for given image features using greedy search.""" sampled_ids = [] inputs = features.unsqueeze(1) for i in range(self.max_seg_length): hiddens, states = self.lstm(inputs, states) # hiddens: (batch_size, 1, hidden_size) outputs = self.linear(hiddens.squeeze(1)) # outputs: (batch_size, vocab_size) _, predicted = outputs.max(1) # predicted: (batch_size) sampled_ids.append(predicted) inputs = self.embed(predicted) # inputs: (batch_size, embed_size) inputs = inputs.unsqueeze(1) # inputs: (batch_size, 1, embed_size) sampled_ids = torch.stack(sampled_ids, 1) # sampled_ids: (batch_size, max_seq_length) return sampled_ids

気になる質問をクリップする

クリップした質問は、後からいつでもMYページで確認できます。

またクリップした質問に回答があった際、通知やメールを受け取ることができます。

バッドをするには、ログインかつ

こちらの条件を満たす必要があります。

guest

回答1

0

ベストアンサー

concurrent.futuresを使うは、メモリを解放したくないときに使う手法です。
max_workers=60とすれば最大60プロセスになるまでプロセスを立ち上げ続けますから、重くなって当然でしょう。

concurrent.futuresを使わずに、公式ドキュメント multiprocessing --- プロセスベースの並列処理だけで処理すればメモリは解放されます。

投稿2021/12/14 08:34

ppaul

総合スコア24670

バッドをするには、ログインかつ

こちらの条件を満たす必要があります。

あなたの回答

tips

太字

斜体

打ち消し線

見出し

引用テキストの挿入

コードの挿入

リンクの挿入

リストの挿入

番号リストの挿入

表の挿入

水平線の挿入

プレビュー

15分調べてもわからないことは
teratailで質問しよう!

ただいまの回答率
85.35%

質問をまとめることで
思考を整理して素早く解決

テンプレート機能で
簡単に質問をまとめる

質問する

関連した質問