質問をすることでしか得られない、回答やアドバイスがある。

15分調べてもわからないことは、質問しよう!

新規登録して質問してみよう
ただいま回答率
85.35%
機械学習

機械学習は、データからパターンを自動的に発見し、そこから知能的な判断を下すためのコンピューターアルゴリズムを指します。人工知能における課題のひとつです。

Python

Pythonは、コードの読みやすさが特徴的なプログラミング言語の1つです。 強い型付け、動的型付けに対応しており、後方互換性がないバージョン2系とバージョン3系が使用されています。 商用製品の開発にも無料で使用でき、OSだけでなく仮想環境にも対応。Unicodeによる文字列操作をサポートしているため、日本語処理も標準で可能です。

Q&A

2回答

1332閲覧

NNに関する、そもそもの疑問

退会済みユーザー

退会済みユーザー

総合スコア0

機械学習

機械学習は、データからパターンを自動的に発見し、そこから知能的な判断を下すためのコンピューターアルゴリズムを指します。人工知能における課題のひとつです。

Python

Pythonは、コードの読みやすさが特徴的なプログラミング言語の1つです。 強い型付け、動的型付けに対応しており、後方互換性がないバージョン2系とバージョン3系が使用されています。 商用製品の開発にも無料で使用でき、OSだけでなく仮想環境にも対応。Unicodeによる文字列操作をサポートしているため、日本語処理も標準で可能です。

0グッド

1クリップ

投稿2021/05/09 10:50

編集2021/05/09 13:30

https://qiita.com/takahiro_itazuri/items/d2bea1c643d7cca11352#comment-a59cd26161ee56ea1220
このpythonで書かれた「自分でNNを作ろう」の記事のコードですが、このコードが以下の2種類のデータを用いています。
mnist_dataset/mnist_train.csv
mnist_dataset/mnist_test.csv
で、このいずれも、データの数を3つとかにしてみました。

mnist_test
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,84,185,159,151,60,36,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,222,254,254,254,254,241,198,198,198,198,198,198,198,198,170,52,0,0,0,0,0,0,0,0,0,0,0,0,67,114,72,114,163,227,254,225,254,254,254,250,229,254,254,140,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,17,66,14,67,67,67,59,21,236,254,106,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,83,253,209,18,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,22,・・・0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0

mnist_train
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,18,18,18,126,136,175,26,166,255,247,127,0,0,0,0,0,0,0,0,0,0,0,0,30,36,94,154,170,253,253,253,253,253,225,172,253,242,195,64,0,0,0,0,0,0,0,0,0,0,0,49,238,253,253,253,253,253,253,253,253,251,93,82,82,56,39,0,0,0,0,0,0,0,0,0,0,0,0,18,219,253,253,253,253,253,198,182,247,241,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,80,156,107,253,253,205,11,0,43,154,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,14,1,154,253,90,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,139,253,190,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,11,190,253,70,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,35,241,225,160,108,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,81,240,253,253,119,25,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,45,186,253,253,150,27,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,16,93,252,253,187,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,249,253,249,64,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,46,130,183,253,253,207,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,39,148,229,253,253,253,250,182,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,24,114,221,253,253,253,253,201,78,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,23,66,213,253,253,253,253,198,81,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,18,171,219,253,253,253,253,195,80,9,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,55,172,226,253,253,253,253,244,133,11,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,136,253,253,253,212,135,132,16,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,51,159,253,159,50,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,48,238,252,252,252,237,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,54,227,253,252,239,233,252,57,6,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,10,60,224,252,253,252,202,84,252,253,122,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,163,252,252,252,253,252,252,96,189,253,167,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,51,238,253,253,190,114,253,228,47,79,255,168,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,48,238,252,252,179,12,75,121,21,0,0,253,243,50,0,0,0,0,0,0,0,0,0,0,0,0,0,38,165,253,233,208,84,0,0,0,0,0,0,253,252,165,0,0,0,0,0,0,0,0,0,0,0,0,7,178,252,240,71,19,28,0,0,0,0,0,0,253,252,195,0,0,0,0,0,0,0,0,0,0,0,0,57,252,252,63,0,0,0,0,0,0,0,0,0,253,252,195,0,0,0,0,0,0,0,0,0,0,0,0,198,253,190,0,0,0,0,0,0,0,0,0,0,255,253,196,0,0,0,0,0,0,0,0,0,0,0,76,246,252,112,0,0,0,0,0,0,0,0,0,0,253,252,148,0,0,0,0,0,0,0,0,0,0,0,85,252,230,25,0,0,0,0,0,0,0,0,7,135,253,186,12,0,0,0,0,0,0,0,0,0,0,0,85,252,223,0,0,0,0,0,0,0,0,7,131,252,225,71,0,0,0,0,0,0,0,0,0,0,0,0,85,252,145,0,0,0,0,0,0,0,48,165,252,173,0,0,0,0,0,0,0,0,0,0,0,0,0,0,86,253,225,0,0,0,0,0,0,114,238,253,162,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,85,252,249,146,48,29,85,178,225,253,223,167,56,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,85,252,252,252,229,215,252,252,252,196,130,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,28,199,252,252,253,252,252,233,145,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,25,128,252,253,252,141,37,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,67,232,39,0,0,0,0,0,0,0,0,0,62,81,0,0,0,0,0,0,0,0,0,0,0,0,0,0,120,180,39,0,0,0,0,0,0,0,0,0,126,163,0,0,0,0,0,0,0,0,0,0,0,0,0,2,153,210,40,0,0,0,0,0,0,0,0,0,220,163,0,0,0,0,0,0,0,0,0,0,0,0,0,27,254,162,0,0,0,0,0,0,0,0,0,0,222,163,0,0,0,0,0,0,0,0,0,0,0,0,0,183,254,125,0,0,0,0,0,0,0,0,0,46,245,163,0,0,0,0,0,0,0,0,0,0,0,0,0,198,254,56,0,0,0,0,0,0,0,0,0,120,254,163,0,0,0,0,0,0,0,0,0,0,0,0,23,231,254,29,0,0,0,0,0,0,0,0,0,159,254,120,0,0,0,0,0,0,0,0,0,0,0,0,163,254,216,16,0,0,0,0,0,0,0,0,0,159,254,67,0,0,0,0,0,0,0,0,0,14,86,178,248,254,91,0,0,0,0,0,0,0,0,0,0,159,254,85,0,0,0,47,49,116,144,150,241,243,234,179,241,252,40,0,0,0,0,0,0,0,0,0,0,150,253,237,207,207,207,253,254,250,240,198,143,91,28,5,233,250,0,0,0,0,0,0,0,0,0,0,0,0,119,177,177,177,177,177,98,56,0,0,0,0,0,102,254,220,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,169,254,137,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,169,254,57,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,169,254,57,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,169,255,94,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,169,254,96,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,169,254,153,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,169,255,153,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,96,254,153,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0

で、実行してみたところ、あまりにも精度が低いです。
また、少し改造したコードで、「全く同じデータ」をtestとtrainに忍ばせて、データ数10個ぐらいで判別を試したのですが、全然判別できませんでした。
「全く同じデータ」が、データ数10個とかで判別できないのに、データ数を1000個に増やしたら判別ができるようになるんでしょうか?またそれはなぜですか?
10個ですら、同じデータですら判別ができないなら、使い物にならないような気がするのですが。

気になる質問をクリップする

クリップした質問は、後からいつでもMYページで確認できます。

またクリップした質問に回答があった際、通知やメールを受け取ることができます。

バッドをするには、ログインかつ

こちらの条件を満たす必要があります。

seastar3

2021/05/09 13:23

この質問にはpythonブログラムが示されていません。ライブラリを活用するのか、自作のメソッドを活用するのか、いずれにしてもニューラルネットワークの構成はどうなっているのかコードを示しましょう。 そもそも、python以前の機械学習とディープラーニングの質問ですからタグを適切に設定しましょう。これまでの質問もそうですよ。
guest

回答2

0

「全く同じデータ」をtestとtrainに忍ばせて、データ数10個ぐらいで判別を試したのですが、全然判別できませんでした。

MNISTから適当に取り出して、10クラス識別問題、1クラスあたり1個、testとtrainに同じデータを使う
という問題設定だと3〜4エポックで判別できるようになりましたよ。
ただの確認間違いか、たまたまうまくいかない初期値に当たったか、たまたまうまくいかないデータを選んだか、決して識別できないデータを作ってしまった(?)か、あるいはなにかを決定的に理解していないかだと思いますよ。

python

1() 2# 直接10個分のデータをリストとして保持 3training_data_list = test_data_list = [ 4[5,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 50,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 60,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 70,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,18,18,18,126,136,175, 826,166,255,247,127,0,0,0,0,0,0,0,0,0,0,0,0,30,36,94,154,170,253,()], 9[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 100,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 110,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 120,0,0,0,0,51,159,253,159,50,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,48,238,252, 13252,252,237,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,54,227,253,()], 14() 15] 16() 17 # 学習 18 epoch = 10 19 for e in range(epoch): 20 print('#epoch ', e) 21 data_size = len(training_data_list) 22 for i in range(data_size): 23 val = training_data_list[i] 24 idata = (np.asfarray(val[1:]) / 255.0 * 0.99) + 0.01 25 tdata = np.zeros(onodes) + 0.01 26 tdata[val[0]] = 0.99 27 nn.backprop(idata, tdata) 28 29 scoreboard = [] 30 for val in test_data_list: 31 idata = (np.asfarray(val[1:]) / 255.0 * 0.99) + 0.01 32 tlabel = val[0] 33 predict = nn.feedforward(idata) 34 plabel = np.argmax(predict) 35 scoreboard.append(tlabel == plabel) 36 37 scoreboard_array = np.asarray(scoreboard) 38 print(scoreboard) 39 print('performance: ', scoreboard_array.sum() / scoreboard_array.size)

結果例

plain

1#epoch 0 2[False, False, False, False, False, False, True, True, False, True] 3performance: 0.3 4#epoch 1 5[True, False, True, True, False, True, True, True, True, True] 6performance: 0.8 7#epoch 2 8[True, True, True, True, True, True, True, True, True, True] 9performance: 1.0 10#epoch 3 11[True, True, True, True, True, True, True, True, True, True] 12performance: 1.0 13#epoch 4 14[True, True, True, True, True, True, True, True, True, True] 15performance: 1.0 16#epoch 5 17[True, True, True, True, True, True, True, True, True, True] 18performance: 1.0 19#epoch 6 20[True, True, True, True, True, True, True, True, True, True] 21performance: 1.0 22#epoch 7 23[True, True, True, True, True, True, True, True, True, True] 24performance: 1.0 25#epoch 8 26[True, True, True, True, True, True, True, True, True, True] 27performance: 1.0 28#epoch 9 29[True, True, True, True, True, True, True, True, True, True] 30performance: 1.0

質問のmnist_test mnist_train は同じデータを忍ばせてないから、mnist_testを識別可能な学習ができるわけがないですね。(上の回答では無視しましたが)

3クラス識別問題で学習データが1クラスあたり1個だと、極端な話、どこか2個の値を見てどっちも1なら"0"、どっちも0なら"1"、こっちが0でこっちが1なら"2"、みたいにたまたま選んだ学習データに依存している識別可能な箇所があって当たり前で、それを見つけるだけで終わってしまう。
ニューラルネットで学習させてもたまたま当てられるという程度のパラメータが見つかったらもう学習が止まって(なぜなら当てられる=誤差がなくなるのだから)未知のデータは全然当てられないものしかできない。
というだけの話。

投稿2021/05/09 14:37

編集2021/05/10 02:39
quickquip

総合スコア11235

バッドをするには、ログインかつ

こちらの条件を満たす必要があります。

退会済みユーザー

退会済みユーザー

2021/05/09 22:12

1や2じゃだめなんですかね。
quickquip

2021/05/09 23:26

3クラス識別問題、1クラスあたり1個、testとtrainに同じデータを使う は1〜2エポックで学習できましたよ。
jbpb0

2021/05/10 00:04 編集

質問者さん > 「全く同じデータ」をtestとtrainに忍ばせて、データ数10個ぐらいで判別を試したのですが、全然判別できませんでした。 「忍ばせる」(一部のデータだけ同じにする)のではなくて、全部同じにしたら判別できませんか?
guest

0

NNの動作原理をちゃんと理解されてから進めべきだと思います。

とりあえず、epochを10000とかにしてやってみるとどうでしょうね?
同じ3つのデータで10000回学習させるという意味ですよ。

投稿2021/05/09 13:50

TakaiY

総合スコア13790

バッドをするには、ログインかつ

こちらの条件を満たす必要があります。

あなたの回答

tips

太字

斜体

打ち消し線

見出し

引用テキストの挿入

コードの挿入

リンクの挿入

リストの挿入

番号リストの挿入

表の挿入

水平線の挿入

プレビュー

まだベストアンサーが選ばれていません

会員登録して回答してみよう

アカウントをお持ちの方は

15分調べてもわからないことは
teratailで質問しよう!

ただいまの回答率
85.35%

質問をまとめることで
思考を整理して素早く解決

テンプレート機能で
簡単に質問をまとめる

質問する

関連した質問