質問をすることでしか得られない、回答やアドバイスがある。

15分調べてもわからないことは、質問しよう!

新規登録して質問してみよう
ただいま回答率
87.20%
scikit-learn

scikit-learnは、Pythonで使用できるオープンソースプロジェクトの機械学習用ライブラリです。多くの機械学習アルゴリズムが実装されていますが、どのアルゴリズムも同じような書き方で利用できます。

Matplotlib

MatplotlibはPythonのおよび、NumPy用のグラフ描画ライブラリです。多くの場合、IPythonと連携して使われます。

機械学習

機械学習は、データからパターンを自動的に発見し、そこから知能的な判断を下すためのコンピューターアルゴリズムを指します。人工知能における課題のひとつです。

Python

Pythonは、コードの読みやすさが特徴的なプログラミング言語の1つです。 強い型付け、動的型付けに対応しており、後方互換性がないバージョン2系とバージョン3系が使用されています。 商用製品の開発にも無料で使用でき、OSだけでなく仮想環境にも対応。Unicodeによる文字列操作をサポートしているため、日本語処理も標準で可能です。

pandas

Pandasは、PythonでRにおけるデータフレームに似た型を持たせることができるライブラリです。 行列計算の負担が大幅に軽減されるため、Rで行っていた集計作業をPythonでも比較的簡単に行えます。 データ構造を変更したりデータ分析したりするときにも便利です。

解決済

scikit-learnの線形回帰で、各特徴量に対する係数を表示したい

jojaku
jojaku

総合スコア4

scikit-learn

scikit-learnは、Pythonで使用できるオープンソースプロジェクトの機械学習用ライブラリです。多くの機械学習アルゴリズムが実装されていますが、どのアルゴリズムも同じような書き方で利用できます。

Matplotlib

MatplotlibはPythonのおよび、NumPy用のグラフ描画ライブラリです。多くの場合、IPythonと連携して使われます。

機械学習

機械学習は、データからパターンを自動的に発見し、そこから知能的な判断を下すためのコンピューターアルゴリズムを指します。人工知能における課題のひとつです。

Python

Pythonは、コードの読みやすさが特徴的なプログラミング言語の1つです。 強い型付け、動的型付けに対応しており、後方互換性がないバージョン2系とバージョン3系が使用されています。 商用製品の開発にも無料で使用でき、OSだけでなく仮想環境にも対応。Unicodeによる文字列操作をサポートしているため、日本語処理も標準で可能です。

pandas

Pandasは、PythonでRにおけるデータフレームに似た型を持たせることができるライブラリです。 行列計算の負担が大幅に軽減されるため、Rで行っていた集計作業をPythonでも比較的簡単に行えます。 データ構造を変更したりデータ分析したりするときにも便利です。

2回答

0評価

0クリップ

418閲覧

投稿2021/02/15 09:31

編集2021/02/16 05:43

機械学習を独学で学んでいます。
練習としてscikit-learnの線形回帰を用いた株価の予測をしています。

列名内容
Data日付(Index)
Open始値、当日の最初に付いた値段
High高値、当日のもっとも高かった値段
Low安値、当日のもっとも安かった値段
Close終値、当日の最後に付いた値段
Volume取引量

上記の説明変数を使って、翌日のHigh(高値)をNext_Highとして予測することをしています。
各特徴量に対する係数を表示したく
model.score(target_predict,target_test)
を実行したのですがエラーで表示されませんでした。
お力添えのほどよろしくお願いします。

Python

%matplotlib inline import pandas as pd import numpy as np import matplotlib.pyplot as plt import seaborn as sns import pandas_datareader.data as dr # アップル社の株価を取得 stock = dr.DataReader('AAPL', "stooq") stock.head() # 翌日のHigh(高値)を Next_Highとして追加 stock['Next_High'] = stock['High'].shift(1) stock.head() # 欠損値の削除 stock = stock.dropna() stock.shape # 検証データの用意 data_columns = ['Open', 'High', 'Low', 'Close', 'Volume'] # 検証データ数 test_rows = 300 # stockデータを目的変数と説明変数に分ける target = stock['Next_High'] data = stock[data_columns] # 学習データと検証データに分割 target_train = target[test_rows:] target_test = target[:test_rows] data_train = data[test_rows:] data_test = data[:test_rows] from sklearn.linear_model import LinearRegression # モデルの初期化 model = LinearRegression() # 学習の実施 model.fit(data_train, target_train) target_predict = model.predict(data_test) # 検証データの目的変数でDataFrameを作成 result = pd.DataFrame(target_test) # 予測結果を列「predict」としてDataFrameに追加 result['predict'] = target_predict # グラフを描画 sns.lineplot(data=result) # 決定係数 model.score(target_predict,target_test)

環境はjupyter notebookです。

良い質問の評価を上げる

以下のような質問は評価を上げましょう

  • 質問内容が明確
  • 自分も答えを知りたい
  • 質問者以外のユーザにも役立つ

評価が高い質問は、TOPページの「注目」タブのフィードに表示されやすくなります。

気になる質問をクリップする

クリップした質問は、後からいつでもマイページで確認できます。

またクリップした質問に回答があった際、通知やメールを受け取ることができます。

teratailでは下記のような質問を「具体的に困っていることがない質問」、「サイトポリシーに違反する質問」と定義し、推奨していません。

  • プログラミングに関係のない質問
  • やってほしいことだけを記載した丸投げの質問
  • 問題・課題が含まれていない質問
  • 意図的に内容が抹消された質問
  • 過去に投稿した質問と同じ内容の質問
  • 広告と受け取られるような投稿

評価を下げると、トップページの「アクティブ」「注目」タブのフィードに表示されにくくなります。

toast-uz

2021/02/15 10:41

model.score(target_predict,target_test) を実行したのですがエラーで表示されませんでした。 とありますが、そのような文はコード内に見当たりません。
jojaku

2021/02/15 12:42

すみません。コード内に記述が漏れていました。 修正しました。

まだ回答がついていません

会員登録して回答してみよう

15分調べてもわからないことは
teratailで質問しよう!

ただいまの回答率
87.20%

質問をまとめることで
思考を整理して素早く解決

テンプレート機能で
簡単に質問をまとめる

質問する

関連した質問

同じタグがついた質問を見る

scikit-learn

scikit-learnは、Pythonで使用できるオープンソースプロジェクトの機械学習用ライブラリです。多くの機械学習アルゴリズムが実装されていますが、どのアルゴリズムも同じような書き方で利用できます。

Matplotlib

MatplotlibはPythonのおよび、NumPy用のグラフ描画ライブラリです。多くの場合、IPythonと連携して使われます。

機械学習

機械学習は、データからパターンを自動的に発見し、そこから知能的な判断を下すためのコンピューターアルゴリズムを指します。人工知能における課題のひとつです。

Python

Pythonは、コードの読みやすさが特徴的なプログラミング言語の1つです。 強い型付け、動的型付けに対応しており、後方互換性がないバージョン2系とバージョン3系が使用されています。 商用製品の開発にも無料で使用でき、OSだけでなく仮想環境にも対応。Unicodeによる文字列操作をサポートしているため、日本語処理も標準で可能です。

pandas

Pandasは、PythonでRにおけるデータフレームに似た型を持たせることができるライブラリです。 行列計算の負担が大幅に軽減されるため、Rで行っていた集計作業をPythonでも比較的簡単に行えます。 データ構造を変更したりデータ分析したりするときにも便利です。