質問をすることでしか得られない、回答やアドバイスがある。

15分調べてもわからないことは、質問しよう!

新規登録して質問してみよう
ただいま回答率
86.12%
PyTorch

PyTorchは、オープンソースのPython向けの機械学習ライブラリ。Facebookの人工知能研究グループが開発を主導しています。強力なGPUサポートを備えたテンソル計算、テープベースの自動微分による柔軟なニューラルネットワークの記述が可能です。

Python

Pythonは、コードの読みやすさが特徴的なプログラミング言語の1つです。 強い型付け、動的型付けに対応しており、後方互換性がないバージョン2系とバージョン3系が使用されています。 商用製品の開発にも無料で使用でき、OSだけでなく仮想環境にも対応。Unicodeによる文字列操作をサポートしているため、日本語処理も標準で可能です。

解決済

pytorchで中間層の特徴量を取り出す方法

trafalbad
trafalbad

総合スコア303

PyTorch

PyTorchは、オープンソースのPython向けの機械学習ライブラリ。Facebookの人工知能研究グループが開発を主導しています。強力なGPUサポートを備えたテンソル計算、テープベースの自動微分による柔軟なニューラルネットワークの記述が可能です。

Python

Pythonは、コードの読みやすさが特徴的なプログラミング言語の1つです。 強い型付け、動的型付けに対応しており、後方互換性がないバージョン2系とバージョン3系が使用されています。 商用製品の開発にも無料で使用でき、OSだけでなく仮想環境にも対応。Unicodeによる文字列操作をサポートしているため、日本語処理も標準で可能です。

1回答

0リアクション

0クリップ

5629閲覧

投稿2020/06/26 09:55

pytorchで3Dresnetの中間層の特徴量(batch, 2048)を取り出したいのですがうまく行きません。
kerasでは慣れていたので簡単にできたのですが、resnetの最終出力層の前の特徴量shape(batch, 2048)を取り出すにはどうしたら良いでしょうか?ご教授お願いします。

普通の2Dのresnetではうまくいきました

ネットワーク

python

print(model) >>> 〜中略〜 (bn3): BatchNorm3d(2048, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (relu): ReLU(inplace) ) ) (avgpool): AdaptiveAvgPool3d(output_size=(1, 1, 1)) (fc): Linear(in_features=2048, out_features=101, bias=True) ) )

コード

python

device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") class Identity(nn.Module): def __init__(self): super(Identity, self).__init__() def forward(self, x): return x def ToNumpy(tensor): return tensor.to('cpu').detach().numpy().copy() tmp_model = model tmp_model.fc = Identity() inputs_ = inputs.to(device) output_ = tmp_model(inputs_) outputs_ = ToNumpy(output_) print('numpy output', type(outputs_), outputs_.shape) #>>>> #outputting..... #numpy output <class 'numpy.ndarray'> (16, 101)

普通のresnetで試したとき

python

import cv2 import numpy as np from torchvision import models import torch from torch import nn path = 't.jpeg' model = models.resnet50(pretrained=True) img = cv2.imread(path, 1) img = np.float32(cv2.resize(img, (224, 224))) / 255 input = preprocess_image(img) device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") # extract feature model.fc = Identity() inputs = input.to(device) output = model(inputs) # convert numpy and save outputs = ToNumpy(output) >>>> # shape==(1, 2048)

以下のような質問にはリアクションをつけましょう

  • 質問内容が明確
  • 自分も答えを知りたい
  • 質問者以外のユーザにも役立つ

リアクションが多い質問は、TOPページの「注目」タブのフィードに表示されやすくなります。

気になる質問をクリップする

クリップした質問は、後からいつでもマイページで確認できます。

またクリップした質問に回答があった際、通知やメールを受け取ることができます。

下記のような質問は推奨されていません。

  • 間違っている
  • 質問になっていない投稿
  • スパムや攻撃的な表現を用いた投稿

適切な質問に修正を依頼しましょう。

kzm4269

2020/06/28 15:29

3Dresnetで試したときのコードでは`model`の生成部分が省略されているようです。 その部分がないと回答者が動作確認できないのでコード全文を公開していただけますか?

まだ回答がついていません

会員登録して回答してみよう

アカウントをお持ちの方は

15分調べてもわからないことは
teratailで質問しよう!

ただいまの回答率
86.12%

質問をまとめることで
思考を整理して素早く解決

テンプレート機能で
簡単に質問をまとめる

質問する

関連した質問

同じタグがついた質問を見る

PyTorch

PyTorchは、オープンソースのPython向けの機械学習ライブラリ。Facebookの人工知能研究グループが開発を主導しています。強力なGPUサポートを備えたテンソル計算、テープベースの自動微分による柔軟なニューラルネットワークの記述が可能です。

Python

Pythonは、コードの読みやすさが特徴的なプログラミング言語の1つです。 強い型付け、動的型付けに対応しており、後方互換性がないバージョン2系とバージョン3系が使用されています。 商用製品の開発にも無料で使用でき、OSだけでなく仮想環境にも対応。Unicodeによる文字列操作をサポートしているため、日本語処理も標準で可能です。