`Google Collaboratoryに関する質問です.
以下はirisというデータセットを用いて最近傍法(K-nn法)というデータ分類を行うプログラムです.
この際,肝心のirisデータセットはライブラリに付属している検証用のものなので特にファイルをインクルードしているわけではないです.
python
1import numpy as np 2import matplotlib.pyplot as plt 3from sklearn.datasets import load_iris 4from sklearn.neighbors import KNeighborsClassifier 5from sklearn.model_selection import cross_val_predict 6from sklearn.model_selection import cross_val_score 7from sklearn.metrics import confusion_matrix 8 9iris = load_iris() 10X = iris.data 11y = iris.target 12 13knn = KNeighborsClassifier(n_neighbors=3) 14y_pred = cross_val_predict(knn, X, y, cv=10) 15confusion_matrix(y, y_pred)
ここで質問なのですが,このプログラムをファイルからデータセットを読み込んで実行する形式に変更したいのですが,どうすればよいでしょうか? 下に自分が試したコードを記します.
これではエラーが出ます. どう修正すればよいでしょうか?
python
1import numpy as np 2import matplotlib.pyplot as plt 3from sklearn.neighbors import KNeighborsClassifier 4from sklearn.model_selection import cross_val_predict 5from sklearn.model_selection import cross_val_score 6from sklearn.metrics import confusion_matrix 7 8with open('drive/My Drive/iris.txt', 'r', encoding='utf-8') as iris: 9 10 X = iris.data 11 y = iris.target 12 13 knn = KNeighborsClassifier(n_neighbors=3) 14 y_pred = cross_val_predict(knn, X, y, cv=10) 15 confusion_matrix(y, y_pred)
error
1AttributeError Traceback (most recent call last) 2<ipython-input-12-10dee33ee058> in <module>() 3 8 with open('drive/My Drive/iris.txt', 'r', encoding='utf-8') as iris: 4 9 5---> 10 X = iris.data 6 11 y = iris.target 7 12 8 9AttributeError: '_io.TextIOWrapper' object has no attribute 'data'
iris.txt
15.1 3.5 1.4 0.2 1.0 24.9 3.0 1.4 0.2 1.0 34.7 3.2 1.3 0.2 1.0 44.6 3.1 1.5 0.2 1.0 55.0 3.6 1.4 0.2 1.0 65.4 3.9 1.7 0.4 1.0 74.6 3.4 1.4 0.3 1.0 85.0 3.4 1.5 0.2 1.0 94.4 2.9 1.4 0.2 1.0 104.9 3.1 1.5 0.1 1.0 115.4 3.7 1.5 0.2 1.0 124.8 3.4 1.6 0.2 1.0 134.8 3.0 1.4 0.1 1.0 144.3 3.0 1.1 0.1 1.0 155.8 4.0 1.2 0.2 1.0 165.7 4.4 1.5 0.4 1.0 175.4 3.9 1.3 0.4 1.0 185.1 3.5 1.4 0.3 1.0 195.7 3.8 1.7 0.3 1.0 205.1 3.8 1.5 0.3 1.0 215.4 3.4 1.7 0.2 1.0 225.1 3.7 1.5 0.4 1.0 234.6 3.6 1.0 0.2 1.0 245.1 3.3 1.7 0.5 1.0 254.8 3.4 1.9 0.2 1.0 265.0 3.0 1.6 0.2 1.0 275.0 3.4 1.6 0.4 1.0 285.2 3.5 1.5 0.2 1.0 295.2 3.4 1.4 0.2 1.0 304.7 3.2 1.6 0.2 1.0 314.8 3.1 1.6 0.2 1.0 325.4 3.4 1.5 0.4 1.0 335.2 4.1 1.5 0.1 1.0 345.5 4.2 1.4 0.2 1.0 354.9 3.1 1.5 0.2 1.0 365.0 3.2 1.2 0.2 1.0 375.5 3.5 1.3 0.2 1.0 384.9 3.6 1.4 0.1 1.0 394.4 3.0 1.3 0.2 1.0 405.1 3.4 1.5 0.2 1.0 415.0 3.5 1.3 0.3 1.0 424.5 2.3 1.3 0.3 1.0 434.4 3.2 1.3 0.2 1.0 445.0 3.5 1.6 0.6 1.0 455.1 3.8 1.9 0.4 1.0 464.8 3.0 1.4 0.3 1.0 475.1 3.8 1.6 0.2 1.0 484.6 3.2 1.4 0.2 1.0 495.3 3.7 1.5 0.2 1.0 505.0 3.3 1.4 0.2 1.0 517.0 3.2 4.7 1.4 2.0 526.4 3.2 4.5 1.5 2.0 536.9 3.1 4.9 1.5 2.0 545.5 2.3 4.0 1.3 2.0 556.5 2.8 4.6 1.5 2.0 565.7 2.8 4.5 1.3 2.0 576.3 3.3 4.7 1.6 2.0 584.9 2.4 3.3 1.0 2.0 596.6 2.9 4.6 1.3 2.0 605.2 2.7 3.9 1.4 2.0 615.0 2.0 3.5 1.0 2.0 625.9 3.0 4.2 1.5 2.0 636.0 2.2 4.0 1.0 2.0 646.1 2.9 4.7 1.4 2.0 655.6 2.9 3.6 1.3 2.0 666.7 3.1 4.5 1.4 2.0 674.6 3.0 4.5 1.5 2.0 685.8 2.7 4.1 1.0 2.0 696.2 2.2 4.5 1.5 2.0 705.6 2.5 3.9 1.1 2.0 715.9 3.2 4.8 1.8 2.0 726.1 2.8 4.0 1.3 2.0 736.3 2.5 4.9 1.5 2.0 746.1 2.8 4.7 1.2 2.0 756.4 2.9 4.3 1.3 2.0 766.6 3.0 4.9 1.4 2.0 776.8 2.8 4.8 1.4 2.0 786.7 3.0 5.0 1.7 2.0 796.0 2.9 4.5 1.5 2.0 805.7 2.6 3.5 1.0 2.0 815.5 2.4 3.8 1.1 2.0 825.5 2.4 3.7 1.0 2.0 835.8 2.7 3.9 1.2 2.0 846.0 2.7 5.1 1.6 2.0 855.4 3.0 4.5 1.5 2.0 866.0 3.4 4.5 1.6 2.0 876.7 3.1 4.7 1.5 2.0 886.3 2.3 4.4 1.3 2.0 895.6 3.0 4.1 1.3 2.0 905.5 2.5 4.0 1.3 2.0 915.5 2.6 4.4 1.2 2.0 926.1 3.0 4.6 1.4 2.0 935.8 2.6 4.0 1.2 2.0 945.0 2.3 3.3 1.0 2.0 955.6 2.7 4.2 1.3 2.0 965.7 3.0 4.2 1.2 2.0 975.7 2.9 4.2 1.3 2.0 986.2 2.9 4.3 1.3 2.0 995.1 2.5 3.0 1.1 2.0 1005.7 2.8 4.1 1.3 2.0 1016.3 3.3 6.0 2.5 3.0 1025.8 2.7 5.1 1.9 3.0 1037.1 3.0 5.9 2.1 3.0 1046.3 2.9 5.6 1.8 3.0 1056.5 3.0 5.8 2.2 3.0 1067.6 3.0 6.6 2.1 3.0 1074.9 2.5 4.5 1.7 3.0 1087.3 2.9 6.3 1.8 3.0 1096.7 2.5 5.8 1.8 3.0 1107.2 3.6 6.1 2.5 3.0 1116.5 3.2 5.1 2.0 3.0 1126.4 2.7 5.3 1.9 3.0 1136.8 3.0 5.5 2.1 3.0 1145.7 2.5 5.0 2.0 3.0 1155.8 2.8 5.1 2.4 3.0 1166.4 3.2 5.3 2.3 3.0 1176.5 3.0 5.5 1.8 3.0 1187.7 3.8 6.7 2.2 3.0 1197.7 2.6 6.9 2.3 3.0 1206.0 2.2 5.0 1.5 3.0 1216.9 3.2 5.7 2.3 3.0 1225.6 2.8 4.9 2.0 3.0 1237.7 2.8 6.7 2.0 3.0 1246.3 2.7 4.9 1.8 3.0 1256.7 3.3 5.7 2.1 3.0 1267.2 3.2 6.0 1.8 3.0 1276.2 2.8 4.8 1.8 3.0 1286.1 3.0 4.9 1.8 3.0 1296.4 2.8 5.6 2.1 3.0 1307.2 3.0 5.8 1.6 3.0 1317.4 2.8 6.1 1.9 3.0 1327.9 3.8 6.4 2.0 3.0 1336.4 2.8 5.6 2.2 3.0 1346.3 2.8 5.1 1.5 3.0 1356.1 2.6 5.6 1.4 3.0 1367.7 3.0 6.1 2.3 3.0 1376.3 3.4 5.6 2.4 3.0 1386.4 3.1 5.5 1.8 3.0 1396.0 3.0 4.8 1.8 3.0 1406.9 3.1 5.4 2.1 3.0 1416.7 3.1 5.6 2.4 3.0 1426.9 3.1 5.1 2.3 3.0 1435.8 2.7 5.1 1.9 3.0 1446.8 3.2 5.9 2.3 3.0 1456.7 3.3 5.7 2.5 3.0 1466.7 3.0 5.2 2.3 3.0 1476.3 2.5 5.0 1.9 3.0 1486.5 3.0 5.2 2.0 3.0 1496.2 3.4 5.4 2.3 3.0 1505.0 3.0 5.1 1.8 3.0 151
回答1件
あなたの回答
tips
プレビュー