from
1(image_train,label_train),(image_test,label_test)=mnist.load_data() 2print('Image\n',image_train[0]) 3print("画像データの要素数",image_train.shape) 4print("ラベルデータの要素数",label_train.shape) 5 6#ラベルと画像データを表示 7for i in range(0,10): 8 print("ラベル",label_train[i]) 9 plt.imshow(image_train[i].reshape(28,28)) 10 plt.show() 11 12print('Train: num of imeges, width,height:',image_train.shape) 13print('Test: num of imeges, width,height:',image_test.shape) 14image_train=image_train.reshape(60000,784) 15image_train=image_train/255.0 16image_test=image_test.reshape(10000,784) 17image_test=image_test/255.0 18 19print('Train: num of labeled images:',label_train.shape) 20print('Test: num of labeled images:',label_test.shape) 21 22for i in range(0,9): 23 print('Train Case:',i,'Label:',label_train[i]) 24for i in range(0,9): 25 print('Test Case:',i,'Label:',label_test[i]) 26 27import numpy as np 28from tensorflow.python.keras.utils.np_utils import to_categorical 29from matplotlib import pyplot as plt 30label_train=to_categorical(label_train,10) 31label_test=to_categorical(label_test,10) 32print('Onehot Label:',label_train[7]) 33print('Onehot Label:',label_test[1]) 34 35from tensorflow.python.keras.models import Sequential 36from tensorflow.python.keras.layers import Dense 37 38model=Sequential() 39 40model.add( 41 Dense(units=64,input_shape=(748,),activation='relu') 42) 43model.add( 44 Dense(units=10, activation='softmax') 45) 46 47model.compile( 48 optimizer='adam', 49 loss='categorical_crossentropy', 50 metrics=['accuracy'] 51) 52 53history_adam=model.fit( 54 image_train,label_train,batch_size=32, 55 epochs=10,validation_split=0.2 56) 57コード
エラーメッセージ
ValueError Traceback (most recent call last)
<ipython-input-97-7bbb81a5a9de> in <module>()
2 history_adam=model.fit(
3 image_train,label_train,batch_size=64,
----> 4 epochs=10,validation_split=0.2
5 )
10 frames
/usr/local/lib/python3.6/dist-packages/tensorflow/python/keras/engine/training.py in _method_wrapper(self, *args, **kwargs)
64 def _method_wrapper(self, *args, **kwargs):
65 if not self._in_multi_worker_mode(): # pylint: disable=protected-access
---> 66 return method(self, *args, **kwargs)
67
68 # Running inside run_distribute_coordinator
already.
/usr/local/lib/python3.6/dist-packages/tensorflow/python/keras/engine/training.py in fit(self, x, y, batch_size, epochs, verbose, callbacks, validation_split, validation_data, shuffle, class_weight, sample_weight, initial_epoch, steps_per_epoch, validation_steps, validation_batch_size, validation_freq, max_queue_size, workers, use_multiprocessing)
846 batch_size=batch_size):
847 callbacks.on_train_batch_begin(step)
--> 848 tmp_logs = train_function(iterator)
849 # Catch OutOfRangeError for Datasets of unknown size.
850 # This blocks until the batch has finished executing.
/usr/local/lib/python3.6/dist-packages/tensorflow/python/eager/def_function.py in call(self, *args, **kwds)
578 xla_context.Exit()
579 else:
--> 580 result = self._call(*args, **kwds)
581
582 if tracing_count == self._get_tracing_count():
/usr/local/lib/python3.6/dist-packages/tensorflow/python/eager/def_function.py in _call(self, *args, **kwds)
625 # This is the first call of call, so we have to initialize.
626 initializers = []
--> 627 self._initialize(args, kwds, add_initializers_to=initializers)
628 finally:
629 # At this point we know that the initialization is complete (or less
/usr/local/lib/python3.6/dist-packages/tensorflow/python/eager/def_function.py in _initialize(self, args, kwds, add_initializers_to)
504 self._concrete_stateful_fn = (
505 self._stateful_fn._get_concrete_function_internal_garbage_collected( # pylint: disable=protected-access
--> 506 *args, **kwds))
507
508 def invalid_creator_scope(*unused_args, **unused_kwds):
/usr/local/lib/python3.6/dist-packages/tensorflow/python/eager/function.py in _get_concrete_function_internal_garbage_collected(self, *args, **kwargs)
2444 args, kwargs = None, None
2445 with self._lock:
-> 2446 graph_function, _, _ = self._maybe_define_function(args, kwargs)
2447 return graph_function
2448
/usr/local/lib/python3.6/dist-packages/tensorflow/python/eager/function.py in _maybe_define_function(self, args, kwargs)
2775
2776 self._function_cache.missed.add(call_context_key)
-> 2777 graph_function = self._create_graph_function(args, kwargs)
2778 self._function_cache.primary[cache_key] = graph_function
2779 return graph_function, args, kwargs
/usr/local/lib/python3.6/dist-packages/tensorflow/python/eager/function.py in _create_graph_function(self, args, kwargs, override_flat_arg_shapes)
2665 arg_names=arg_names,
2666 override_flat_arg_shapes=override_flat_arg_shapes,
-> 2667 capture_by_value=self._capture_by_value),
2668 self._function_attributes,
2669 # Tell the ConcreteFunction to clean up its graph once it goes out of
/usr/local/lib/python3.6/dist-packages/tensorflow/python/framework/func_graph.py in func_graph_from_py_func(name, python_func, args, kwargs, signature, func_graph, autograph, autograph_options, add_control_dependencies, arg_names, op_return_value, collections, capture_by_value, override_flat_arg_shapes)
979 _, original_func = tf_decorator.unwrap(python_func)
980
--> 981 func_outputs = python_func(*func_args, **func_kwargs)
982
983 # invariant: func_outputs
contains only Tensors, CompositeTensors,
/usr/local/lib/python3.6/dist-packages/tensorflow/python/eager/def_function.py in wrapped_fn(*args, **kwds)
439 # wrapped allows AutoGraph to swap in a converted function. We give
440 # the function a weak reference to itself to avoid a reference cycle.
--> 441 return weak_wrapped_fn().wrapped(*args, **kwds)
442 weak_wrapped_fn = weakref.ref(wrapped_fn)
443
/usr/local/lib/python3.6/dist-packages/tensorflow/python/framework/func_graph.py in wrapper(*args, **kwargs)
966 except Exception as e: # pylint:disable=broad-except
967 if hasattr(e, "ag_error_metadata"):
--> 968 raise e.ag_error_metadata.to_exception(e)
969 else:
970 raise
ValueError: in user code:
/usr/local/lib/python3.6/dist-packages/tensorflow/python/keras/engine/training.py:571 train_function * outputs = self.distribute_strategy.run( /usr/local/lib/python3.6/dist-packages/tensorflow/python/distribute/distribute_lib.py:951 run ** return self._extended.call_for_each_replica(fn, args=args, kwargs=kwargs) /usr/local/lib/python3.6/dist-packages/tensorflow/python/distribute/distribute_lib.py:2290 call_for_each_replica return self._call_for_each_replica(fn, args, kwargs) /usr/local/lib/python3.6/dist-packages/tensorflow/python/distribute/distribute_lib.py:2649 _call_for_each_replica return fn(*args, **kwargs) /usr/local/lib/python3.6/dist-packages/tensorflow/python/keras/engine/training.py:531 train_step ** y_pred = self(x, training=True) /usr/local/lib/python3.6/dist-packages/tensorflow/python/keras/engine/base_layer.py:886 __call__ self.name) /usr/local/lib/python3.6/dist-packages/tensorflow/python/keras/engine/input_spec.py:216 assert_input_compatibility ' but received input with shape ' + str(shape)) ValueError: Input 0 of layer sequential_3 is incompatible with the layer: expected axis -1 of input shape to have value 748 but received input with shape [64, 784]
回答2件
あなたの回答
tips
プレビュー
バッドをするには、ログインかつ
こちらの条件を満たす必要があります。