質問をすることでしか得られない、回答やアドバイスがある。

15分調べてもわからないことは、質問しよう!

ただいまの
回答率

90.00%

pythonを用いて回転不変位相限定相関法を行いたいです。

受付中

回答 1

投稿 編集

  • 評価
  • クリップ 0
  • VIEW 88

stylenanda

score 5

リンク内容

上のリンクを参考にpythonで回転不変位相限定相関を行っています。
上記のプログラム、上記の画像をそのまま利用して実行したのですが、エラーが出現してしまいます。

#!/usr/bin/env python
# -*- coding: utf-8 -*-
import sys

import numpy
from numpy import pi, sin, cos
from scipy.optimize import leastsq
import scipy, scipy.fftpack

import cv2


import matplotlib.pyplot as plt

def logpolar(src, center, magnitude_scale = 40):

    mat1 = cv.fromarray(numpy.float64(src))
    mat2 = cv.CreateMat(src.shape[0], src.shape[1], mat1.type)

    cv.LogPolar(mat1, mat2, center, magnitude_scale, \
                cv.CV_INTER_CUBIC+cv.CV_WARP_FILL_OUTLIERS)

    return numpy.asarray(mat2)

def zero_padding(src, dstshape, pos = (0, 0)):
    y, x = pos
    dst = numpy.zeros(dstshape)
    dst[y:src.shape[0] + y, x:src.shape[1] + x] = src
    return dst

def pocfunc_model(alpha, delta1, delta2, r, u):
    N1, N2 = r.shape
    V1, V2 = map(lambda x: 2 * x + 1, u)
    return lambda n1, n2: alpha / (N1 * N2) * sin((n1 + delta1) * V1 / N1 * pi) * sin((n2 + delta2) * V2 / N2 * pi)\
                                            / (sin((n1 + delta1) * pi / N1) * sin((n2 + delta2) * pi / N2))

def pocfunc(f, g, windowfunc = numpy.hanning, withlpf = False):
    m = numpy.floor(map(lambda x: x / 2.0, f.shape))
    u = map(lambda x: x / 2.0, m)

    # hanning window
    hy = windowfunc(f.shape[0])
    hx = windowfunc(f.shape[1])
    hw = hy.reshape(hy.shape[0], 1) * hx
    f = f * hw
    g = g * hw

    # compute 2d fft
    F = scipy.fftpack.fft2(f)
    G = scipy.fftpack.fft2(g)
    G_ = numpy.conj(G)
    R = F * G_ / numpy.abs(F * G_)

    if withlpf == True:
        R = scipy.fftpack.fftshift(R)
        lpf = numpy.ones(map(lambda x: x + 1.0, m))
        lpf = zero_padding(lpf, f.shape, u)
        R = R * lpf
        R = scipy.fftpack.fftshift(R)

    return scipy.fftpack.fftshift(numpy.real(scipy.fftpack.ifft2(R)))

def poc(f, g, fitting_shape = (9, 9)):
    # compute phase-only correlation
    center = map(lambda x: x / 2.0, f.shape)
    m = numpy.floor(map(lambda x: x / 2.0, f.shape))
    u = map(lambda x: x / 2.0, m)

    r = pocfunc(f, g)

    # least-square fitting
    max_pos = numpy.argmax(r)
    peak = (max_pos / f.shape[1], max_pos % f.shape[1])
    max_peak = r[peak[0], peak[1]]

    mf = numpy.floor(map(lambda x: x / 2.0, fitting_shape))
    fitting_area = r[peak[0] - mf[0] : peak[0] + mf[0] + 1,\
                     peak[1] - mf[1] : peak[1] + mf[1] + 1]

    p0 = [0.5, -(peak[0] - m[0]) - 0.02, -(peak[1] - m[1]) - 0.02]
    y, x = numpy.mgrid[-mf[0]:mf[0] + 1, -mf[1]:mf[1] + 1]
    y = y + peak[0] - m[0]
    x = x + peak[1] - m[1]
    errorfunction = lambda p: numpy.ravel(pocfunc_model(p[0], p[1], p[2], r, u)(y, x) - fitting_area)
    plsq = leastsq(errorfunction, p0)
    return (plsq[0][0], plsq[0][1], plsq[0][2])

def ripoc(f, g, M = 50, fitting_shape = (9, 9)):

    hy = numpy.hanning(f.shape[0])
    hx = numpy.hanning(f.shape[1])
    hw = hy.reshape(hy.shape[0], 1) * hx

    ff = f * hw
    gg = g * hw

    F = scipy.fftpack.fft2(ff)
    G = scipy.fftpack.fft2(gg)

    F = scipy.fftpack.fftshift(numpy.log(numpy.abs(F)))
    G = scipy.fftpack.fftshift(numpy.log(numpy.abs(G)))

    FLP = logpolar(F, (F.shape[0] / 2, F.shape[1] / 2), M)
    GLP = logpolar(G, (G.shape[0] / 2, G.shape[1] / 2), M)

    R = poc(FLP, GLP)

    angle = -R[1] / F.shape[0] * 360
    scale = 1.0 - R[2] / 100

    center = tuple(numpy.array(g.shape) / 2)
    rot = cv2.getRotationMatrix2D(center, -angle, 1.0 + (1.0 - scale))

    g_dash = cv2.warpAffine(g, rot, (g.shape[1], g.shape[0]), flags=cv2.INTER_LANCZOS4)

    t = poc(f, g_dash)

    return (t[1], t[2], angle, scale) 

エラーの修正方法を教えてほしいです。

>>> from poc import*
>>> import cv2
>>> img1=cv2.imread("lena.jpg",0)
>>> img2=cv2.imread("lena_x59_y16_7_27deg.jpg",0)
>>> ripoc(img1,img2)
Traceback (most recent call last):
  File "<stdin>", line 1, in <module>
  line 103, in ripoc
    FLP = logpolar(F, (F.shape[0] / 2, F.shape[1] / 2), M)
  line 17, in logpolar
    mat1 = cv.fromarray(numpy.float64(src))
NameError: name 'cv' is not defined     

というエラーが出ています。
cvとcv2の違いもいまいちわかっていないので何方か教えていただけないでしょうか
よろしく御願い致します。

  • 気になる質問をクリップする

    クリップした質問は、後からいつでもマイページで確認できます。

    またクリップした質問に回答があった際、通知やメールを受け取ることができます。

    クリップを取り消します

  • 良い質問の評価を上げる

    以下のような質問は評価を上げましょう

    • 質問内容が明確
    • 自分も答えを知りたい
    • 質問者以外のユーザにも役立つ

    評価が高い質問は、TOPページの「注目」タブのフィードに表示されやすくなります。

    質問の評価を上げたことを取り消します

  • 評価を下げられる数の上限に達しました

    評価を下げることができません

    • 1日5回まで評価を下げられます
    • 1日に1ユーザに対して2回まで評価を下げられます

    質問の評価を下げる

    teratailでは下記のような質問を「具体的に困っていることがない質問」、「サイトポリシーに違反する質問」と定義し、推奨していません。

    • プログラミングに関係のない質問
    • やってほしいことだけを記載した丸投げの質問
    • 問題・課題が含まれていない質問
    • 意図的に内容が抹消された質問
    • 広告と受け取られるような投稿

    評価が下がると、TOPページの「アクティブ」「注目」タブのフィードに表示されにくくなります。

    質問の評価を下げたことを取り消します

    この機能は開放されていません

    評価を下げる条件を満たしてません

    評価を下げる理由を選択してください

    詳細な説明はこちら

    上記に当てはまらず、質問内容が明確になっていない質問には「情報の追加・修正依頼」機能からコメントをしてください。

    質問の評価を下げる機能の利用条件

    この機能を利用するためには、以下の事項を行う必要があります。

回答 1

0

ご質問のリンク内容に掲示されているRIPOC の Python による実装のソースをpoc.pyのファイル名で、Pythonインタープリタを起動するのと同じディレクトリに保存してみてください。

追記

リンク内容のコードはおそらくOpenCVのバージョンが2.xまでのやつで動くコードだと思います。
最近の3.x以降のバージョンではメソッドなどが色々変わっています。
OpenCV 2.4とOpenCV 3.xの違い

質問のリンク先の一番下の方にあるGithubへのリンクにcv3にも対応したコードがありますので、そちらを使ってみては?

投稿

編集

  • 回答の評価を上げる

    以下のような回答は評価を上げましょう

    • 正しい回答
    • わかりやすい回答
    • ためになる回答

    評価が高い回答ほどページの上位に表示されます。

  • 回答の評価を下げる

    下記のような回答は推奨されていません。

    • 間違っている回答
    • 質問の回答になっていない投稿
    • スパムや攻撃的な表現を用いた投稿

    評価を下げる際はその理由を明確に伝え、適切な回答に修正してもらいましょう。

  • 2019/12/03 10:03

    det ripoc (f,g,M=50.....)
    でripoc 関数で指定しているのですが、これでだめなのでしょうか??

    キャンセル

  • 2019/12/03 22:15

    あぁ、勘違いしてました。
    img2 = cv2.imread("lena_x59_y16_7.27deg.jpg", 0)
    が失敗してるんじゃないですかねぇ。画像ファイルのファイル名間違ってないですか?

    キャンセル

  • 2019/12/05 12:58

    コメントありがとうございました

    画像のファイル名が間違っておりましたので修正しました
    その時にまた新しいエラーが検出しました。
    cvとcv2の違いがいまいち分かっていないので教えていただきたいです。
    よろしく御願い致します

    キャンセル

15分調べてもわからないことは、teratailで質問しよう!

  • ただいまの回答率 90.00%
  • 質問をまとめることで、思考を整理して素早く解決
  • テンプレート機能で、簡単に質問をまとめられる

同じタグがついた質問を見る