機械学習で次のエラーがでます。
could not broadcast input array from shape (2,1) into shape (2)
ディープラーニングをして正解率が出ればいいのですが何かアドバイスがありましたら教えてください。
import tensorflow as tf import tensorflow.contrib.keras as keras from sklearn.model_selection import train_test_split import pandas as pd import numpy as np # データの読み込み --- (*1) analysisresults_data = pd.read_csv("analysis_resultstable_BX.csv",encoding="utf-8") # データをラベルと入力データに分離する y = analysisresults_data.loc[:,"Result"] x = analysisresults_data.loc[:,["Signatures_id","Hit_count"]] # 学習用とテスト用に分割する --- (*2) x_train, x_test, y_train, y_test = train_test_split(x, y, test_size = 0.2, train_size = 0.8, shuffle = True) # モデル構造を定義 --- (*3) Dense = keras.layers.Dense model = keras.models.Sequential() model.add(Dense(10, activation='relu', input_shape=(1,))) model.add(Dense(2, activation='softmax')) # ---(*3a) # モデルを構築 --- (*4) model.compile( loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy']) # 学習を実行 --- (*5) model.fit(x_train, y_train, batch_size=20, epochs=300) # モデルを評価 --- (*6) score = model.evaluate(x_test, y_test, verbose=1) print('正解率=', score[1], 'loss=', score[0])
回答1件
あなたの回答
tips
プレビュー
バッドをするには、ログインかつ
こちらの条件を満たす必要があります。