質問をすることでしか得られない、回答やアドバイスがある。

15分調べてもわからないことは、質問しよう!

ただいまの
回答率

87.37%

TransformerのPytorchでの実装のPositionalEncodingクラスのエラー

受付中

回答 1

投稿 編集

  • 評価
  • クリップ 1
  • VIEW 1,984

score 4

前提・実現したいこと

こちらの解説記事のソースコードを実行しようと試みましたができない

発生している問題・エラーメッセージ

positional encodingの部分でエラーが起きているっぽい

Traceback (most recent call last):
  File "C:../..", line 245, in <module>
    tmp_model = make_model(10, 10, 2)
  File "C:../..", line 228, in make_model
    position = PositionalEncoding(d_model, dropout)
  File "C:../..", line 212, in __init__
    pe[:, 0::2] = torch.sin(position * div_term)
RuntimeError: expected device cpu and dtype Float but got device cpu and dtype Long

該当のソースコード

class PositionalEncoding(nn.Module):

    def __init__(self, d_model, dropout, max_len=5000):
        super(PositionalEncoding, self).__init__()
        self.dropout = nn.Dropout(p=dropout)


        pe = torch.zeros(max_len, d_model)
        position = torch.arange(0, max_len).unsqueeze(1)
        div_term = torch.exp(torch.arange(0., d_model, 2) *
                             -(math.log(10000.0) / d_model))
        pe[:, 0::2] = torch.sin(position * div_term)
        pe[:, 1::2] = torch.cos(position * div_term)
        pe = pe.unsqueeze(0)
        self.register_buffer('pe', pe)

    def forward(self, x):
        x = x + Variable(self.pe[:, :x.size(1)], 
                         requires_grad=False)
        return self.dropout(x)

def make_model(src_vocab, tgt_vocab, N=6, 
               d_model=512, d_ff=2048, h=8, dropout=0.1):
    "Helper: Construct a model from hyperparameters."
    c = copy.deepcopy
    attn = MultiHeadedAttention(h, d_model)
    ff = PositionwiseFeedForward(d_model, d_ff, dropout)
    position = PositionalEncoding(d_model, dropout)
    model = EncoderDecoder(
        Encoder(EncoderLayer(d_model, c(attn), c(ff), dropout), N),
        Decoder(DecoderLayer(d_model, c(attn), c(attn), 
                             c(ff), dropout), N),
        nn.Sequential(Embeddings(d_model, src_vocab), c(position)),
        nn.Sequential(Embeddings(d_model, tgt_vocab), c(position)),
        Generator(d_model, tgt_vocab))

    # This was important from their code. 
    # Initialize parameters with Glorot / fan_avg.
    for p in model.parameters():
        if p.dim() > 1:
            nn.init.xavier_uniform(p)
    return model

# Small example model.
tmp_model = make_model(10, 10, 2)

試したこと

解説記事のプログラムをそのまま実行すると別のエラー(RuntimeError: exp_vml_cpu not implemented for 'Long')が出ていたので

Traceback (most recent call last):
  File "C:../..", line 245, in <module>
    tmp_model = make_model(10, 10, 2)
  File "C:../..", line 228, in make_model
    position = PositionalEncoding(d_model, dropout)
  File "C:../..", line 211, in __init__
    -(math.log(10000.0) / d_model))
RuntimeError: exp_vml_cpu not implemented for 'Long'

こちらを参考に0に小数点を付けました

補足情報

python 3.5.4
torch 1.1.0

  • 気になる質問をクリップする

    クリップした質問は、後からいつでもマイページで確認できます。

    またクリップした質問に回答があった際、通知やメールを受け取ることができます。

    クリップを取り消します

  • 良い質問の評価を上げる

    以下のような質問は評価を上げましょう

    • 質問内容が明確
    • 自分も答えを知りたい
    • 質問者以外のユーザにも役立つ

    評価が高い質問は、TOPページの「注目」タブのフィードに表示されやすくなります。

    質問の評価を上げたことを取り消します

  • 評価を下げられる数の上限に達しました

    評価を下げることができません

    • 1日5回まで評価を下げられます
    • 1日に1ユーザに対して2回まで評価を下げられます

    質問の評価を下げる

    teratailでは下記のような質問を「具体的に困っていることがない質問」、「サイトポリシーに違反する質問」と定義し、推奨していません。

    • プログラミングに関係のない質問
    • やってほしいことだけを記載した丸投げの質問
    • 問題・課題が含まれていない質問
    • 意図的に内容が抹消された質問
    • 過去に投稿した質問と同じ内容の質問
    • 広告と受け取られるような投稿

    評価が下がると、TOPページの「アクティブ」「注目」タブのフィードに表示されにくくなります。

    質問の評価を下げたことを取り消します

    この機能は開放されていません

    評価を下げる条件を満たしてません

    評価を下げる理由を選択してください

    詳細な説明はこちら

    上記に当てはまらず、質問内容が明確になっていない質問には「情報の追加・修正依頼」機能からコメントをしてください。

    質問の評価を下げる機能の利用条件

    この機能を利用するためには、以下の事項を行う必要があります。

質問への追記・修正、ベストアンサー選択の依頼

  • meg_

    2019/09/28 12:34 編集

    ・リンクは「リンクの挿入」で記入してください。
    ・エラーメッセージ全文を質問に追記してください。

    キャンセル

回答 1

0

position = torch.arange(0, max_len).unsqueeze(1)
div_term = torch.exp(torch.arange(0, d_model, 2) * -(math.log(10000.0) / d_model))

position = torch.arange(0., max_len).unsqueeze(1)
div_term = torch.exp(torch.arange(0., d_model, 2) * -(math.log(10000.0) / d_model))

に変更するとできるようです.
これは,トーチexpとsinは以前LongTensorをサポートしていましたが、もうサポートしていない可能性があるためらしいです.(それについてはよくわかりません)

詳しくはこちらのサイトに書いてあります.

RuntimeError: “exp” not implemented for 'torch.LongTensor'

投稿

  • 回答の評価を上げる

    以下のような回答は評価を上げましょう

    • 正しい回答
    • わかりやすい回答
    • ためになる回答

    評価が高い回答ほどページの上位に表示されます。

  • 回答の評価を下げる

    下記のような回答は推奨されていません。

    • 間違っている回答
    • 質問の回答になっていない投稿
    • スパムや攻撃的な表現を用いた投稿

    評価を下げる際はその理由を明確に伝え、適切な回答に修正してもらいましょう。

15分調べてもわからないことは、teratailで質問しよう!

  • ただいまの回答率 87.37%
  • 質問をまとめることで、思考を整理して素早く解決
  • テンプレート機能で、簡単に質問をまとめられる

関連した質問

同じタグがついた質問を見る