質問をすることでしか得られない、回答やアドバイスがある。

15分調べてもわからないことは、質問しよう!

新規登録して質問してみよう
ただいま回答率
85.83%
NumPy

NumPyはPythonのプログラミング言語の科学的と数学的なコンピューティングに関する拡張モジュールです。

Python

Pythonは、コードの読みやすさが特徴的なプログラミング言語の1つです。 強い型付け、動的型付けに対応しており、後方互換性がないバージョン2系とバージョン3系が使用されています。 商用製品の開発にも無料で使用でき、OSだけでなく仮想環境にも対応。Unicodeによる文字列操作をサポートしているため、日本語処理も標準で可能です。

pandas

Pandasは、PythonでRにおけるデータフレームに似た型を持たせることができるライブラリです。 行列計算の負担が大幅に軽減されるため、Rで行っていた集計作業をPythonでも比較的簡単に行えます。 データ構造を変更したりデータ分析したりするときにも便利です。

Q&A

解決済

sklearn: Input contains NaN, infinity or a value too large for dtype('float32')のエラーが出る

chgrios
chgrios

総合スコア70

NumPy

NumPyはPythonのプログラミング言語の科学的と数学的なコンピューティングに関する拡張モジュールです。

Python

Pythonは、コードの読みやすさが特徴的なプログラミング言語の1つです。 強い型付け、動的型付けに対応しており、後方互換性がないバージョン2系とバージョン3系が使用されています。 商用製品の開発にも無料で使用でき、OSだけでなく仮想環境にも対応。Unicodeによる文字列操作をサポートしているため、日本語処理も標準で可能です。

pandas

Pandasは、PythonでRにおけるデータフレームに似た型を持たせることができるライブラリです。 行列計算の負担が大幅に軽減されるため、Rで行っていた集計作業をPythonでも比較的簡単に行えます。 データ構造を変更したりデータ分析したりするときにも便利です。

1回答

0グッド

0クリップ

3502閲覧

投稿2019/08/17 08:52

はじめてKaggleに登録して、titanicの生存者予測タスクにあたって、次のようなコードを書いてみました。

python

1import lightgbm as lgbm 2from sklearn.model_selection import train_test_split 3from sklearn.metrics import accuracy_score 4import pandas as pd 5import pandas_profiling as pdp 6import numpy as np 7import os 8from sklearn.linear_model import LogisticRegression 9from sklearn.ensemble import RandomForestClassifier 10train = pd.read_csv('../input/titanic/train.csv') 11test = pd.read_csv('../input/titanic/test.csv') 12train.head() 13# print('fuck') 14train= pd.get_dummies(train, columns=['Sex', 'Embarked']) 15test = pd.get_dummies(test, columns=['Sex', 'Embarked']) 16 17# train.head() 18train = train.drop(['PassengerId', 'Name', 'Cabin', 'Ticket'], axis=1) 19test = test.drop(['PassengerId', 'Name', 'Cabin', 'Ticket'], axis=1) 20 21x_train = train.drop(['Survived','Age'], axis=1) 22x_train = x_train.drop(x_train.columns[np.isnan(x_train).any()], axis=1) 23x_test = x_test.drop(x_test.columns[np.isnan(x_test).any()], axis=1) 24 25y_train = train['Survived'] 26x_test = train.drop('Survived', axis=1) 27 28model = RandomForestClassifier() 29model.fit(x_train, y_train) 30y_pred = model.predict(x_test) 31 32logreg.socre(x_train, y_train) 33

そうすると、以下のエラーメッセージがでます。下のコードでNANを削除しているのですが、
x_train = x_train.drop(x_train.columns[np.isnan(x_train).any()], axis=1)

Error

1--------------------------------------------------------------------------- 2ValueError Traceback (most recent call last) 3<ipython-input-18-b40df7e0435a> in <module> 4 31 x_test = train.drop('Survived', axis=1) 5 32 model.fit(x_train, y_train) 6---> 33 y_pred = model.predict(x_test) 7 34 8 35 logreg.socre(x_train, y_train) 9 10/opt/conda/lib/python3.6/site-packages/sklearn/ensemble/forest.py in predict(self, X) 11 543 The predicted classes. 12 544 """ 13--> 545 proba = self.predict_proba(X) 14 546 15 547 if self.n_outputs_ == 1: 16 17/opt/conda/lib/python3.6/site-packages/sklearn/ensemble/forest.py in predict_proba(self, X) 18 586 check_is_fitted(self, 'estimators_') 19 587 # Check data 20--> 588 X = self._validate_X_predict(X) 21 589 22 590 # Assign chunk of trees to jobs 23 24/opt/conda/lib/python3.6/site-packages/sklearn/ensemble/forest.py in _validate_X_predict(self, X) 25 357 "call `fit` before exploiting the model.") 26 358 27--> 359 return self.estimators_[0]._validate_X_predict(X, check_input=True) 28 360 29 361 @property 30 31/opt/conda/lib/python3.6/site-packages/sklearn/tree/tree.py in _validate_X_predict(self, X, check_input) 32 389 """Validate X whenever one tries to predict, apply, predict_proba""" 33 390 if check_input: 34--> 391 X = check_array(X, dtype=DTYPE, accept_sparse="csr") 35 392 if issparse(X) and (X.indices.dtype != np.intc or 36 393 X.indptr.dtype != np.intc): 37 38/opt/conda/lib/python3.6/site-packages/sklearn/utils/validation.py in check_array(array, accept_sparse, accept_large_sparse, dtype, order, copy, force_all_finite, ensure_2d, allow_nd, ensure_min_samples, ensure_min_features, warn_on_dtype, estimator) 39 540 if force_all_finite: 40 541 _assert_all_finite(array, 41--> 542 allow_nan=force_all_finite == 'allow-nan') 42 543 43 544 if ensure_min_samples > 0: 44 45/opt/conda/lib/python3.6/site-packages/sklearn/utils/validation.py in _assert_all_finite(X, allow_nan) 46 54 not allow_nan and not np.isfinite(X).all()): 47 55 type_err = 'infinity' if allow_nan else 'NaN, infinity' 48---> 56 raise ValueError(msg_err.format(type_err, X.dtype)) 49 57 # for object dtype data, we only check for NaNs (GH-13254) 50 58 elif X.dtype == np.dtype('object') and not allow_nan: 51 52ValueError: Input contains NaN, infinity or a value too large for dtype('float32').

どうしたらよいでしょうか。

気になる質問をクリップする

クリップした質問は、後からいつでもマイページで確認できます。

またクリップした質問に回答があった際、通知やメールを受け取ることができます。

下記のような質問は推奨されていません。

  • 質問になっていない投稿
  • スパムや攻撃的な表現を用いた投稿

適切な質問に修正を依頼しましょう。

meg_

2019/08/17 10:21

x_train = x_train.drop(x_train.columns[np.isnan(x_train).any()], axis=1) 上記コードの後でx_trainの中身は確認しましたか?

回答1

1

ベストアンサー

どんなデータか分かりませんが
Nanを削除するのは

python

1x_train = x_train.dropna()

dropna()を使います

このエラーは多分ですけどデータを削除したときに、
データの長さが合わなかったりするとその空いているところをnanで埋められるようになっているのでそれで、でているような気がします。

そのようなところがあったらデータの長さをdropしたりして合わせてあげたり、reindex()でインデックスを合わせてあげたりしてください。
reindex()などでまたnanが入ってしまうことがあるのでそうしたらshift(-1)をしてずらしたりしてください

どういうデータかとか分からないので回答になっていなかったらすいません

投稿2019/08/23 07:44

退会済みユーザー

退会済みユーザー

総合スコア0

chgrios👍を押しています

下記のような回答は推奨されていません。

  • 質問の回答になっていない投稿
  • スパムや攻撃的な表現を用いた投稿

このような回答には修正を依頼しましょう。

あなたの回答

tips

太字

斜体

打ち消し線

見出し

引用テキストの挿入

コードの挿入

リンクの挿入

リストの挿入

番号リストの挿入

表の挿入

水平線の挿入

プレビュー

15分調べてもわからないことは
teratailで質問しよう!

ただいまの回答率
85.83%

質問をまとめることで
思考を整理して素早く解決

テンプレート機能で
簡単に質問をまとめる

質問する

関連した質問

同じタグがついた質問を見る

NumPy

NumPyはPythonのプログラミング言語の科学的と数学的なコンピューティングに関する拡張モジュールです。

Python

Pythonは、コードの読みやすさが特徴的なプログラミング言語の1つです。 強い型付け、動的型付けに対応しており、後方互換性がないバージョン2系とバージョン3系が使用されています。 商用製品の開発にも無料で使用でき、OSだけでなく仮想環境にも対応。Unicodeによる文字列操作をサポートしているため、日本語処理も標準で可能です。

pandas

Pandasは、PythonでRにおけるデータフレームに似た型を持たせることができるライブラリです。 行列計算の負担が大幅に軽減されるため、Rで行っていた集計作業をPythonでも比較的簡単に行えます。 データ構造を変更したりデータ分析したりするときにも便利です。