質問をすることでしか得られない、回答やアドバイスがある。

15分調べてもわからないことは、質問しよう!

ただいまの
回答率

90.51%

  • Python 3.x

    9800questions

    Python 3はPythonプログラミング言語の最新バージョンであり、2008年12月3日にリリースされました。

  • Keras

    472questions

困っています!Kerasで画像分類(簡単なコード)

受付中

回答 1

投稿

  • 評価
  • クリップ 0
  • VIEW 159

HirokiJapan

score 2

現在、Kerasを使ってアップルとオレンジの画像を分類をしようとしています。
環境はGoogle Colaboratoryです。
ネットで見つけたものをそのまま利用しディレクトリ名もそのまま合わせ、学習用画像はそれぞれ20枚ずつ、テスト用画像は5枚ずつ用意しています。
コードは以下のようなものです。

from keras.models import Sequential
from keras.layers import Activation, Dense, Dropout
from keras.utils.np_utils import to_categorical
from keras.optimizers import Adagrad
from keras.optimizers import Adam
import numpy as np
from PIL import Image
import os
# 学習用のデータを作る.
image_list = []
label_list = []

# ./data/train 以下のorange,appleディレクトリ以下の画像を読み込む。
for dir in os.listdir("data/train"):
    if dir == ".DS_Store":
        continue
dir1 = "data/train/" + dir 
    label = 0

    if dir == "apple":    # appleはラベル0
        label = 0
    elif dir == "orange": # orangeはラベル1
        label = 1

    for file in os.listdir(dir1):
        if file != ".DS_Store":
            # 配列label_listに正解ラベルを追加(りんご:0 オレンジ:1)
            label_list.append(label)
            filepath = dir1 + "/" + file
# 画像を25x25pixelに変換し、1要素が[R,G,B]3要素を含む配列の25x25の2次元配列として読み込む。
            # [R,G,B]はそれぞれが0-255の配列。
            image = np.array(Image.open(filepath).resize((25, 25)))
            print(filepath)
            # 配列を変換し、[[Redの配列],[Greenの配列],[Blueの配列]] のような形にする。
            image = image.transpose(2, 0, 1)
            # さらにフラットな1次元配列に変換。最初の1/3はRed、次がGreenの、最後がBlueの要素がフラットに並ぶ。
            image = image.reshape(1, image.shape[0] * image.shape[1] * image.shape[2]).astype("float32")[0]
            # 出来上がった配列をimage_listに追加。
            image_list.append(image / 255.)
# kerasに渡すためにnumpy配列に変換。
image_list = np.array(image_list)

# ラベルの配列を1と0からなるラベル配列に変更
# 0 -> [1,0], 1 -> [0,1] という感じ。
Y = to_categorical(label_list)

# モデルを生成してニューラルネットを構築
model = Sequential()
model.add(Dense(200, input_dim=1875))
model.add(Activation("relu"))
model.add(Dropout(0.2))

model.add(Dense(200))
model.add(Activation("relu"))
model.add(Dropout(0.2))

model.add(Dense(2))
model.add(Activation("softmax"))
# オプティマイザにAdamを使用
opt = Adam(lr=0.001)
# モデルをコンパイル
model.compile(loss="categorical_crossentropy", optimizer=opt, metrics=["accuracy"])
# 学習を実行。10%はテストに使用。
model.fit(image_list, Y, nb_epoch=1500, batch_size=100, validation_split=0.1)

# テスト用ディレクトリ(./data/train/)の画像でチェック。正解率を表示する。
total = 0.
ok_count = 0.

for dir in os.listdir("data/train"):
    if dir == ".DS_Store":
        continue

    dir1 = "data/test/" + dir 
    label = 0

    if dir == "apple":
        label = 0
    elif dir == "orange":
        label = 1

    for file in os.listdir(dir1):
        if file != ".DS_Store":
            label_list.append(label)
            filepath = dir1 + "/" + file
            image = np.array(Image.open(filepath).resize((25, 25)))
            print(filepath)
            image = image.transpose(2, 0, 1)
            image = image.reshape(1, image.shape[0] * image.shape[1] * image.shape[2]).astype("float32")[0]
            result = model.predict_classes(np.array([image / 255.]))
            print("label:", label, "result:", result[0])

            total += 1.

            if label == result[0]:
                ok_count += 1.

print("seikai: ", ok_count / total * 100, "%")


上記のようなコードを実行したら、次のようなエラーが出ました。

ValueError                                Traceback (most recent call last)
<ipython-input-5-fb62631d675b> in <module>()
     66 model.compile(loss="categorical_crossentropy", optimizer=opt, metrics=["accuracy"])
     67 # 学習を実行。10%はテストに使用。
---> 68 model.fit(image_list, Y, nb_epoch=1500, batch_size=100, validation_split=0.1)
     69 
     70 # テスト用ディレクトリ(./data/train/)の画像でチェック。正解率を表示する。

/usr/local/lib/python3.6/dist-packages/keras/engine/training.py in fit(self, x, y, batch_size, epochs, verbose, callbacks, validation_split, validation_data, shuffle, class_weight, sample_weight, initial_epoch, steps_per_epoch, validation_steps, **kwargs)
    950             sample_weight=sample_weight,
    951             class_weight=class_weight,
--> 952             batch_size=batch_size)
    953         # Prepare validation data.
    954         do_validation = False

/usr/local/lib/python3.6/dist-packages/keras/engine/training.py in _standardize_user_data(self, x, y, sample_weight, class_weight, check_array_lengths, batch_size)
    749             feed_input_shapes,
    750             check_batch_axis=False,  # Don't enforce the batch size.
--> 751             exception_prefix='input')
    752 
    753         if y is not None:

/usr/local/lib/python3.6/dist-packages/keras/engine/training_utils.py in standardize_input_data(data, names, shapes, check_batch_axis, exception_prefix)
    136                             ': expected ' + names[i] + ' to have shape ' +
    137                             str(shape) + ' but got array with shape ' +
--> 138                             str(data_shape))
    139     return data
    140 

ValueError: Error when checking input: expected dense_1_input to have shape (1875,) but got array with shape (1,)

隠れそうに問題があるのかな?と思ったのですが、初学者なのであまりよくわかりませんでした。
どなたか回答よろしくお願いします!!めちゃくちゃ困っています!!

  • 気になる質問をクリップする

    クリップした質問は、後からいつでもマイページで確認できます。

    またクリップした質問に回答があった際、通知やメールを受け取ることができます。

    クリップを取り消します

  • 良い質問の評価を上げる

    以下のような質問は評価を上げましょう

    • 質問内容が明確
    • 自分も答えを知りたい
    • 質問者以外のユーザにも役立つ

    評価が高い質問は、TOPページの「注目」タブのフィードに表示されやすくなります。

    質問の評価を上げたことを取り消します

  • 評価を下げられる数の上限に達しました

    評価を下げることができません

    • 1日5回まで評価を下げられます
    • 1日に1ユーザに対して2回まで評価を下げられます

    質問の評価を下げる

    teratailでは下記のような質問を「具体的に困っていることがない質問」、「サイトポリシーに違反する質問」と定義し、推奨していません。

    • プログラミングに関係のない質問
    • やってほしいことだけを記載した丸投げの質問
    • 問題・課題が含まれていない質問
    • 意図的に内容が抹消された質問
    • 広告と受け取られるような投稿

    評価が下がると、TOPページの「アクティブ」「注目」タブのフィードに表示されにくくなります。

    質問の評価を下げたことを取り消します

    この機能は開放されていません

    評価を下げる条件を満たしてません

    評価を下げる理由を選択してください

    詳細な説明はこちら

    上記に当てはまらず、質問内容が明確になっていない質問には「情報の追加・修正依頼」機能からコメントをしてください。

    質問の評価を下げる機能の利用条件

    この機能を利用するためには、以下の事項を行う必要があります。

回答 1

0

ValueError: Error when checking input: expected dense_1_input to have shape (1875,) but got array with shape (1,)

上記は「dense_1_inputのサイズは(1875,)でないといけないけど、入力した配列のサイズは(1,)だよ」というエラーです。
隠れ層は関係ありません。
image_listのサイズを確認してみてください。


また、類似の質問をしているようですが、質問は編集できるので、新たに質問するのは避けてください。

投稿

  • 回答の評価を上げる

    以下のような回答は評価を上げましょう

    • 正しい回答
    • わかりやすい回答
    • ためになる回答

    評価が高い回答ほどページの上位に表示されます。

  • 回答の評価を下げる

    下記のような回答は推奨されていません。

    • 間違っている回答
    • 質問の回答になっていない投稿
    • スパムや攻撃的な表現を用いた投稿

    評価を下げる際はその理由を明確に伝え、適切な回答に修正してもらいましょう。

  • 2019/04/26 11:27

    低評価するのであれば、その理由を記載してください。

    キャンセル

  • 2019/04/26 11:33

    良い回答かと思います。高評価付けました。

    キャンセル

同じタグがついた質問を見る

  • Python 3.x

    9800questions

    Python 3はPythonプログラミング言語の最新バージョンであり、2008年12月3日にリリースされました。

  • Keras

    472questions