状況
下記URLの「Windowsでのインストール」以降を参考にしました。
https://www.sejuku.net/blog/42488
CPUでの動作は確認できましたが、GPUでは動作しません。
解決方法をご存知であればご教示願います。
エラー内容
C:\Users\Administor>python C:\Users\Administor\Documents\Chainer\trainer.py
Traceback (most recent call last):
File "C:\Users\Administor\Documents\Chainer\trainer.py", line 130, in <module>
cuda.get_device(gpu_device).use()
File "C:\Users\Administor\AppData\Local\Continuum\anaconda3\lib\site-packages\chainer\backends\cuda.py", line 223, in get_device
return _get_device(*args)
File "C:\Users\Administor\AppData\Local\Continuum\anaconda3\lib\site-packages\chainer\backends\cuda.py", line 229, in _get_device
check_cuda_available()
File "C:\Users\Administor\AppData\Local\Continuum\anaconda3\lib\site-packages\chainer\backends\cuda.py", line 90, in check_cuda_available
raise RuntimeError(msg)
RuntimeError: CUDA environment is not correctly set up
(see https://github.com/chainer/chainer#installation).CuPy is not correctly installed.
If you are using wheel distribution (cupy-cudaXX), make sure that the version of CuPy you installed matches with the version of CUDA on your host.
Also, confirm that only one CuPy package is installed:
$ pip freeze
If you are building CuPy from source, please check your environment, uninstall CuPy and reinstall it with:
$ pip install cupy --no-cache-dir -vvvv
Check the Installation Guide for details:
https://docs-cupy.chainer.org/en/latest/install.html
original error: DLL load failed: 指定されたモジュールが見つかりません。
python
1gpu_device = 0 2cuda.get_device(gpu_device).use() # エラーの行(line:130) 3model.to_gpu(gpu_device) 4xp = cuda.cupy 5 6optimizer = optimizers.Adam() 7optimizer.setup(model)
環境
OS:Windows Server 2016 Essencial
GPU:NVIDIA GeForce GTX 1050 Ti
インストールしたもの | バージョン |
---|---|
Python | 3.6.5 |
ANACANDA | 5.2 |
CUDA | 9.2 |
パッケージ | バージョン |
---|---|
alabaster | 0.7.10 |
anaconda-client | 1.6.14 |
anaconda-navigator | 1.8.7 |
anaconda-project | 0.8.2 |
asn1crypto | 0.24.0 |
astroid | 1.6.3 |
astropy | 3.0.2 |
attrs | 18.1.0 |
Babel | 2.5.3 |
backcall | 0.1.0 |
backports.shutil-get-terminal-size | 1.0.0 |
beautifulsoup4 | 4.6.0 |
bitarray | 0.8.1 |
bkcharts | 0.2 |
blaze | 0.11.3 |
bleach | 2.1.3 |
bokeh | 0.12.16 |
boto | 2.48.0 |
Bottleneck | 1.2.1 |
certifi | 2018.4.16 |
cffi | 1.11.5 |
chainer | 4.1.0 |
chardet | 3.0.4 |
click | 6.7 |
cloudpickle | 0.5.3 |
clyent | 1.2.2 |
colorama | 0.3.9 |
comtypes | 1.1.4 |
conda | 4.5.4 |
conda-build | 3.10.5 |
conda-verify | 2.0.0 |
contextlib2 | 0.5.5 |
cryptography | 2.2.2 |
cupy-cuda92 | 5.0.0b2 |
cycler | 0.10.0 |
Cython | 0.28.2 |
cytoolz | 0.9.0.1 |
dask | 0.17.5 |
datashape | 0.5.4 |
decorator | 4.3.0 |
distributed | 1.21.8 |
docutils | 0.14 |
entrypoints | 0.2.3 |
et-xmlfile | 1.0.1 |
fastcache | 1.0.2 |
fastrlock | 0.3 |
filelock | 3.0.4 |
Flask | 1.0.2 |
Flask-Cors | 3.0.4 |
gevent | 1.3.0 |
glob2 | 0.6 |
greenlet | 0.4.13 |
h5py | 2.8.0 |
heapdict | 1.0.0 |
html5lib | 1.0.1 |
idna | 2.6 |
imageio | 2.3.0 |
imagesize | 1.0.0 |
ipykernel | 4.8.2 |
ipython | 6.4.0 |
ipython-genutils | 0.2.0 |
ipywidgets | 7.2.1 |
isort | 4.3.4 |
itsdangerous | 0.24 |
jdcal | 1.4 |
jedi | 0.12.0 |
Jinja2 | 2.10 |
jsonschema | 2.6.0 |
jupyter | 1.0.0 |
jupyter-client | 5.2.3 |
jupyter-console | 5.2.0 |
jupyter-core | 4.4.0 |
jupyterlab | 0.32.1 |
jupyterlab-launcher | 0.10.5 |
kiwisolver | 1.0.1 |
lazy-object-proxy | 1.3.1 |
llvmlite | 0.23.1 |
locket | 0.2.0 |
lxml | 4.2.1 |
MarkupSafe | 1.0 |
matplotlib | 2.2.2 |
mccabe | 0.6.1 |
menuinst | 1.4.14 |
mistune | 0.8.3 |
mkl-fft | 1.0.0 |
mkl-random | 1.0.1 |
more-itertools | 4.1.0 |
mpmath | 1.0.0 |
msgpack | 0.5.6 |
msgpack-python | 0.5.6 |
multipledispatch | 0.5.0 |
navigator-updater | 0.2.1 |
nbconvert | 5.3.1 |
nbformat | 4.4.0 |
networkx | 2.1 |
nltk | 3.3 |
nose | 1.3.7 |
notebook | 5.5.0 |
numba | 0.38.0 |
numexpr | 2.6.5 |
numpy | 1.14.5 |
numpydoc | 0.8.0 |
odo | 0.5.1 |
olefile | 0.45.1 |
openpyxl | 2.5.3 |
packaging | 17.1 |
pandas | 0.23.1 |
pandocfilters | 1.4.2 |
parso | 0.2.0 |
partd | 0.3.8 |
path.py | 11.0.1 |
pathlib2 | 2.3.2 |
patsy | 0.5.0 |
pep8 | 1.7.1 |
pickleshare | 0.7.4 |
Pillow | 5.1.0 |
pip | 10.0.1 |
pkginfo | 1.4.2 |
pluggy | 0.6.0 |
ply | 3.11 |
prompt-toolkit | 1.0.15 |
protobuf | 3.6.0 |
psutil | 5.4.5 |
py | 1.5.3 |
pycodestyle | 2.4.0 |
pycosat | 0.6.3 |
pycparser | 2.18 |
pycrypto | 2.6.1 |
pycurl | 7.43.0.1 |
pyflakes | 1.6.0 |
Pygments | 2.2.0 |
pylint | 1.8.4 |
pyodbc | 4.0.23 |
pyOpenSSL | 18.0.0 |
pyparsing | 2.2.0 |
PySocks | 1.6.8 |
pytest | 3.5.1 |
pytest-arraydiff | 0.2 |
pytest-astropy | 0.3.0 |
pytest-doctestplus | 0.1.3 |
pytest-openfiles | 0.3.0 |
pytest-remotedata | 0.2.1 |
python-dateutil | 2.7.3 |
pytz | 2018.4 |
PyWavelets | 0.5.2 |
pywin32 | 223 |
pywinpty | 0.5.1 |
PyYAML | 3.12 |
pyzmq | 17.0.0 |
QtAwesome | 0.4.4 |
qtconsole | 4.3.1 |
QtPy | 1.4.1 |
requests | 2.18.4 |
rope | 0.10.7 |
ruamel-yaml | 0.15.35 |
scikit-image | 0.13.1 |
scikit-learn | 0.19.1 |
scipy | 1.1.0 |
seaborn | 0.8.1 |
Send2Trash | 1.5.0 |
setuptools | 39.2.0 |
simplegeneric | 0.8.1 |
singledispatch | 3.4.0.3 |
six | 1.11.0 |
snowballstemmer | 1.2.1 |
sortedcollections | 0.6.1 |
sortedcontainers | 1.5.10 |
Sphinx | 1.7.4 |
sphinxcontrib-websupport | 1.0.1 |
spyder | 3.2.8 |
SQLAlchemy | 1.2.7 |
statsmodels | 0.9.0 |
sympy | 1.1.1 |
tables | 3.4.3 |
tblib | 1.3.2 |
terminado | 0.8.1 |
testpath | 0.3.1 |
toolz | 0.9.0 |
tornado | 5.0.2 |
traitlets | 4.3.2 |
typing | 3.6.4 |
unicodecsv | 0.14.1 |
urllib3 | 1.22 |
wcwidth | 0.1.7 |
webencodings | 0.5.1 |
Werkzeug | 0.14.1 |
wheel | 0.31.1 |
widgetsnbextension | 3.2.1 |
win-inet-pton | 1.0.1 |
win-unicode-console | 0.5 |
wincertstore | 0.2 |
wrapt | 1.10.11 |
xlrd | 1.1.0 |
XlsxWriter | 1.0.4 |
xlwings | 0.11.8 |
xlwt | 1.3.0 |
zict | 0.1.3 |
回答1件
あなたの回答
tips
プレビュー
バッドをするには、ログインかつ
こちらの条件を満たす必要があります。
2018/06/25 05:57