###質問の内容
stable diffusion 2.0が出たとのことで、実際にgoogle colabで動かしてみようと思ったのですが、^Cと表示され実行が止まってしまいます。以前stable diffusion 1.0を動かした際には問題なく使えいました。git hubのコードを確認したところ大きく変わったところは見当たらず容量の問題かと思い調べたところ解決するような記事がなかったため、詳しい皆様のお力をお借りしたいです。
実現したいこと
stable diffusion2.0の text2image、inpaintingを実装したい。
実行結果
Global seed set to 42 Loading model from /content/drive/MyDrive/ckpt_stab/sd-v1-4.ckpt Global Step: 470000 /usr/local/lib/python3.8/dist-packages/xformers/_C.so: undefined symbol: _ZNK3c104impl13OperatorEntry20reportSignatureErrorENS0_12CppSignatureE WARNING:root:WARNING: /usr/local/lib/python3.8/dist-packages/xformers/_C.so: undefined symbol: _ZNK3c104impl13OperatorEntry20reportSignatureErrorENS0_12CppSignatureE Need to compile C++ extensions to get sparse attention suport. Please run python setup.py build develop WARNING:root:A matching Triton is not available, some optimizations will not be enabled. Error caught was: module 'triton.language' has no attribute 'constexpr' /usr/local/lib/python3.8/dist-packages/pytorch_lightning/utilities/distributed.py:258: LightningDeprecationWarning: `pytorch_lightning.utilities.distributed.rank_zero_only` has been deprecated in v1.8.1 and will be removed in v1.10.0. You can import it from `pytorch_lightning.utilities` instead. rank_zero_deprecation( LatentDiffusion: Running in eps-prediction mode Setting up MemoryEfficientCrossAttention. Query dim is 320, context_dim is None and using 5 heads. Setting up MemoryEfficientCrossAttention. Query dim is 320, context_dim is 1024 and using 5 heads. Setting up MemoryEfficientCrossAttention. Query dim is 320, context_dim is None and using 5 heads. Setting up MemoryEfficientCrossAttention. Query dim is 320, context_dim is 1024 and using 5 heads. Setting up MemoryEfficientCrossAttention. Query dim is 640, context_dim is None and using 10 heads. Setting up MemoryEfficientCrossAttention. Query dim is 640, context_dim is 1024 and using 10 heads. Setting up MemoryEfficientCrossAttention. Query dim is 640, context_dim is None and using 10 heads. Setting up MemoryEfficientCrossAttention. Query dim is 640, context_dim is 1024 and using 10 heads. Setting up MemoryEfficientCrossAttention. Query dim is 1280, context_dim is None and using 20 heads. Setting up MemoryEfficientCrossAttention. Query dim is 1280, context_dim is 1024 and using 20 heads. Setting up MemoryEfficientCrossAttention. Query dim is 1280, context_dim is None and using 20 heads. Setting up MemoryEfficientCrossAttention. Query dim is 1280, context_dim is 1024 and using 20 heads. Setting up MemoryEfficientCrossAttention. Query dim is 1280, context_dim is None and using 20 heads. Setting up MemoryEfficientCrossAttention. Query dim is 1280, context_dim is 1024 and using 20 heads. Setting up MemoryEfficientCrossAttention. Query dim is 1280, context_dim is None and using 20 heads. Setting up MemoryEfficientCrossAttention. Query dim is 1280, context_dim is 1024 and using 20 heads. Setting up MemoryEfficientCrossAttention. Query dim is 1280, context_dim is None and using 20 heads. Setting up MemoryEfficientCrossAttention. Query dim is 1280, context_dim is 1024 and using 20 heads. Setting up MemoryEfficientCrossAttention. Query dim is 1280, context_dim is None and using 20 heads. Setting up MemoryEfficientCrossAttention. Query dim is 1280, context_dim is 1024 and using 20 heads. Setting up MemoryEfficientCrossAttention. Query dim is 640, context_dim is None and using 10 heads. Setting up MemoryEfficientCrossAttention. Query dim is 640, context_dim is 1024 and using 10 heads. Setting up MemoryEfficientCrossAttention. Query dim is 640, context_dim is None and using 10 heads. Setting up MemoryEfficientCrossAttention. Query dim is 640, context_dim is 1024 and using 10 heads. Setting up MemoryEfficientCrossAttention. Query dim is 640, context_dim is None and using 10 heads. Setting up MemoryEfficientCrossAttention. Query dim is 640, context_dim is 1024 and using 10 heads. Setting up MemoryEfficientCrossAttention. Query dim is 320, context_dim is None and using 5 heads. Setting up MemoryEfficientCrossAttention. Query dim is 320, context_dim is 1024 and using 5 heads. Setting up MemoryEfficientCrossAttention. Query dim is 320, context_dim is None and using 5 heads. Setting up MemoryEfficientCrossAttention. Query dim is 320, context_dim is 1024 and using 5 heads. Setting up MemoryEfficientCrossAttention. Query dim is 320, context_dim is None and using 5 heads. Setting up MemoryEfficientCrossAttention. Query dim is 320, context_dim is 1024 and using 5 heads. DiffusionWrapper has 865.91 M params. making attention of type 'vanilla-xformers' with 512 in_channels building MemoryEfficientAttnBlock with 512 in_channels... Working with z of shape (1, 4, 32, 32) = 4096 dimensions. making attention of type 'vanilla-xformers' with 512 in_channels building MemoryEfficientAttnBlock with 512 in_channels... ^C
該当のソースコード
Python
1ソースコード 2!python scripts/txt2img.py --prompt "illustration of a dog sitting in front of a big tree" --plms --ckpt /content/drive/MyDrive/ckpt_stab/sd-v1-4.ckpt --n_samples 1
試したこと
実行するPythonファイルの中身を確認した。
^Cという実行結果について調べたが記載されている物が見つからなかった。
補足情報(FW/ツールのバージョンなど)
ソースコードや実行結果も貼らさせていただきましたが、^Cで実行が終わる理由と原因を主に教えていただきたいです。よろしくお願いします。

回答1件
あなたの回答
tips
プレビュー