回答編集履歴
1
コード追記
test
CHANGED
@@ -29,3 +29,435 @@
|
|
29
29
|
|
30
30
|
|
31
31
|
参考まで。
|
32
|
+
|
33
|
+
|
34
|
+
|
35
|
+
予測データ作成
|
36
|
+
|
37
|
+
```Python
|
38
|
+
|
39
|
+
'''
|
40
|
+
|
41
|
+
#Train a simple deep CNN on the CIFAR10 small images dataset.
|
42
|
+
|
43
|
+
It gets to 75% validation accuracy in 25 epochs, and 79% after 50 epochs.
|
44
|
+
|
45
|
+
(it's still underfitting at that point, though).
|
46
|
+
|
47
|
+
'''
|
48
|
+
|
49
|
+
import keras
|
50
|
+
|
51
|
+
from keras.datasets import cifar10
|
52
|
+
|
53
|
+
from keras.preprocessing.image import ImageDataGenerator
|
54
|
+
|
55
|
+
from keras.models import Sequential
|
56
|
+
|
57
|
+
from keras.layers import Dense, Dropout, Activation, Flatten
|
58
|
+
|
59
|
+
from keras.layers import Conv2D, MaxPooling2D
|
60
|
+
|
61
|
+
import os
|
62
|
+
|
63
|
+
|
64
|
+
|
65
|
+
batch_size = 32
|
66
|
+
|
67
|
+
num_classes = 10
|
68
|
+
|
69
|
+
epochs = 100
|
70
|
+
|
71
|
+
data_augmentation = True
|
72
|
+
|
73
|
+
num_predictions = 20
|
74
|
+
|
75
|
+
#save_dir = os.path.join(os.getcwd(), 'saved_models')
|
76
|
+
|
77
|
+
save_dir = "."
|
78
|
+
|
79
|
+
model_name = 'cnn_model.h5'
|
80
|
+
|
81
|
+
w_name = 'cnn_weights.h5'
|
82
|
+
|
83
|
+
|
84
|
+
|
85
|
+
# The data, split between train and test sets:
|
86
|
+
|
87
|
+
(x_train, y_train), (x_test, y_test) = cifar10.load_data()
|
88
|
+
|
89
|
+
print('x_train shape:', x_train.shape)
|
90
|
+
|
91
|
+
print(x_train.shape[0], 'train samples')
|
92
|
+
|
93
|
+
print(x_test.shape[0], 'test samples')
|
94
|
+
|
95
|
+
|
96
|
+
|
97
|
+
# Convert class vectors to binary class matrices.
|
98
|
+
|
99
|
+
y_train = keras.utils.to_categorical(y_train, num_classes)
|
100
|
+
|
101
|
+
y_test = keras.utils.to_categorical(y_test, num_classes)
|
102
|
+
|
103
|
+
|
104
|
+
|
105
|
+
model = Sequential()
|
106
|
+
|
107
|
+
model.add(Conv2D(32, (3, 3), padding='same',
|
108
|
+
|
109
|
+
input_shape=x_train.shape[1:]))
|
110
|
+
|
111
|
+
model.add(Activation('relu'))
|
112
|
+
|
113
|
+
model.add(Conv2D(32, (3, 3)))
|
114
|
+
|
115
|
+
model.add(Activation('relu'))
|
116
|
+
|
117
|
+
model.add(MaxPooling2D(pool_size=(2, 2)))
|
118
|
+
|
119
|
+
model.add(Dropout(0.25))
|
120
|
+
|
121
|
+
|
122
|
+
|
123
|
+
model.add(Conv2D(64, (3, 3), padding='same'))
|
124
|
+
|
125
|
+
model.add(Activation('relu'))
|
126
|
+
|
127
|
+
model.add(Conv2D(64, (3, 3)))
|
128
|
+
|
129
|
+
model.add(Activation('relu'))
|
130
|
+
|
131
|
+
model.add(MaxPooling2D(pool_size=(2, 2)))
|
132
|
+
|
133
|
+
model.add(Dropout(0.25))
|
134
|
+
|
135
|
+
|
136
|
+
|
137
|
+
model.add(Flatten())
|
138
|
+
|
139
|
+
model.add(Dense(512))
|
140
|
+
|
141
|
+
model.add(Activation('relu'))
|
142
|
+
|
143
|
+
model.add(Dropout(0.5))
|
144
|
+
|
145
|
+
model.add(Dense(num_classes))
|
146
|
+
|
147
|
+
model.add(Activation('softmax'))
|
148
|
+
|
149
|
+
|
150
|
+
|
151
|
+
# initiate RMSprop optimizer
|
152
|
+
|
153
|
+
opt = keras.optimizers.RMSprop(lr=0.0001, decay=1e-6)
|
154
|
+
|
155
|
+
|
156
|
+
|
157
|
+
# Let's train the model using RMSprop
|
158
|
+
|
159
|
+
model.compile(loss='categorical_crossentropy',
|
160
|
+
|
161
|
+
optimizer=opt,
|
162
|
+
|
163
|
+
metrics=['accuracy'])
|
164
|
+
|
165
|
+
|
166
|
+
|
167
|
+
x_train = x_train.astype('float32')
|
168
|
+
|
169
|
+
x_test = x_test.astype('float32')
|
170
|
+
|
171
|
+
x_train /= 255
|
172
|
+
|
173
|
+
x_test /= 255
|
174
|
+
|
175
|
+
|
176
|
+
|
177
|
+
if not data_augmentation:
|
178
|
+
|
179
|
+
print('Not using data augmentation.')
|
180
|
+
|
181
|
+
model.fit(x_train, y_train,
|
182
|
+
|
183
|
+
batch_size=batch_size,
|
184
|
+
|
185
|
+
epochs=epochs,
|
186
|
+
|
187
|
+
validation_data=(x_test, y_test),
|
188
|
+
|
189
|
+
shuffle=True)
|
190
|
+
|
191
|
+
else:
|
192
|
+
|
193
|
+
print('Using real-time data augmentation.')
|
194
|
+
|
195
|
+
# This will do preprocessing and realtime data augmentation:
|
196
|
+
|
197
|
+
datagen = ImageDataGenerator(
|
198
|
+
|
199
|
+
featurewise_center=False, # set input mean to 0 over the dataset
|
200
|
+
|
201
|
+
samplewise_center=False, # set each sample mean to 0
|
202
|
+
|
203
|
+
featurewise_std_normalization=False, # divide inputs by std of the dataset
|
204
|
+
|
205
|
+
samplewise_std_normalization=False, # divide each input by its std
|
206
|
+
|
207
|
+
zca_whitening=False, # apply ZCA whitening
|
208
|
+
|
209
|
+
zca_epsilon=1e-06, # epsilon for ZCA whitening
|
210
|
+
|
211
|
+
rotation_range=0, # randomly rotate images in the range (degrees, 0 to 180)
|
212
|
+
|
213
|
+
# randomly shift images horizontally (fraction of total width)
|
214
|
+
|
215
|
+
width_shift_range=0.1,
|
216
|
+
|
217
|
+
# randomly shift images vertically (fraction of total height)
|
218
|
+
|
219
|
+
height_shift_range=0.1,
|
220
|
+
|
221
|
+
shear_range=0., # set range for random shear
|
222
|
+
|
223
|
+
zoom_range=0., # set range for random zoom
|
224
|
+
|
225
|
+
channel_shift_range=0., # set range for random channel shifts
|
226
|
+
|
227
|
+
# set mode for filling points outside the input boundaries
|
228
|
+
|
229
|
+
fill_mode='nearest',
|
230
|
+
|
231
|
+
cval=0., # value used for fill_mode = "constant"
|
232
|
+
|
233
|
+
horizontal_flip=True, # randomly flip images
|
234
|
+
|
235
|
+
vertical_flip=False, # randomly flip images
|
236
|
+
|
237
|
+
# set rescaling factor (applied before any other transformation)
|
238
|
+
|
239
|
+
rescale=None,
|
240
|
+
|
241
|
+
# set function that will be applied on each input
|
242
|
+
|
243
|
+
preprocessing_function=None,
|
244
|
+
|
245
|
+
# image data format, either "channels_first" or "channels_last"
|
246
|
+
|
247
|
+
data_format=None,
|
248
|
+
|
249
|
+
# fraction of images reserved for validation (strictly between 0 and 1)
|
250
|
+
|
251
|
+
validation_split=0.0)
|
252
|
+
|
253
|
+
|
254
|
+
|
255
|
+
# Compute quantities required for feature-wise normalization
|
256
|
+
|
257
|
+
# (std, mean, and principal components if ZCA whitening is applied).
|
258
|
+
|
259
|
+
datagen.fit(x_train)
|
260
|
+
|
261
|
+
|
262
|
+
|
263
|
+
# Fit the model on the batches generated by datagen.flow().
|
264
|
+
|
265
|
+
model.fit_generator(datagen.flow(x_train, y_train,
|
266
|
+
|
267
|
+
batch_size=batch_size),
|
268
|
+
|
269
|
+
epochs=epochs,
|
270
|
+
|
271
|
+
validation_data=(x_test, y_test),
|
272
|
+
|
273
|
+
workers=4)
|
274
|
+
|
275
|
+
|
276
|
+
|
277
|
+
# Save model and weights
|
278
|
+
|
279
|
+
if not os.path.isdir(save_dir):
|
280
|
+
|
281
|
+
os.makedirs(save_dir)
|
282
|
+
|
283
|
+
model_path = os.path.join(save_dir, model_name)
|
284
|
+
|
285
|
+
model.save(model_path)
|
286
|
+
|
287
|
+
print('Saved trained model at %s ' % model_path)
|
288
|
+
|
289
|
+
|
290
|
+
|
291
|
+
w_path = os.path.join(save_dir, w_name)
|
292
|
+
|
293
|
+
model.save_weights(w_path)
|
294
|
+
|
295
|
+
|
296
|
+
|
297
|
+
# Score trained model.
|
298
|
+
|
299
|
+
scores = model.evaluate(x_test, y_test, verbose=1)
|
300
|
+
|
301
|
+
print('Test loss:', scores[0])
|
302
|
+
|
303
|
+
print('Test accuracy:', scores[1])
|
304
|
+
|
305
|
+
```
|
306
|
+
|
307
|
+
|
308
|
+
|
309
|
+
環境構築とテスト実行
|
310
|
+
|
311
|
+
```
|
312
|
+
|
313
|
+
>conda create -n cifar10 python=3.6.9 tensorflow=1.15.0 keras=2.2.5 matplotlib flask
|
314
|
+
|
315
|
+
>conda activate cifar10
|
316
|
+
|
317
|
+
(VS2015ビルド環境がないと怒られるが無視)
|
318
|
+
|
319
|
+
>conda install -c conda-forge opencv
|
320
|
+
|
321
|
+
>python app.py
|
322
|
+
|
323
|
+
(いろいろ警告が出るが無視)
|
324
|
+
|
325
|
+
```
|
326
|
+
|
327
|
+
|
328
|
+
|
329
|
+
`app.py`
|
330
|
+
|
331
|
+
```Python
|
332
|
+
|
333
|
+
import pickle
|
334
|
+
|
335
|
+
import numpy as np
|
336
|
+
|
337
|
+
from flask import Flask, render_template, request, redirect, url_for
|
338
|
+
|
339
|
+
|
340
|
+
|
341
|
+
from keras.models import load_model
|
342
|
+
|
343
|
+
import cv2
|
344
|
+
|
345
|
+
import numpy as np
|
346
|
+
|
347
|
+
import matplotlib.pyplot as plt
|
348
|
+
|
349
|
+
import io
|
350
|
+
|
351
|
+
import tensorflow as tf
|
352
|
+
|
353
|
+
import sys
|
354
|
+
|
355
|
+
|
356
|
+
|
357
|
+
app = Flask(__name__)
|
358
|
+
|
359
|
+
|
360
|
+
|
361
|
+
# 機械学習モデルの読込
|
362
|
+
|
363
|
+
model = load_model("./templates/cnn_model.h5")
|
364
|
+
|
365
|
+
model.load_weights("./templates/cnn_weights.h5")
|
366
|
+
|
367
|
+
|
368
|
+
|
369
|
+
graph = tf.get_default_graph()
|
370
|
+
|
371
|
+
|
372
|
+
|
373
|
+
@app.route("/")
|
374
|
+
|
375
|
+
def index():
|
376
|
+
|
377
|
+
return render_template("index.html")
|
378
|
+
|
379
|
+
|
380
|
+
|
381
|
+
@app.route("/result", methods=['POST'])
|
382
|
+
|
383
|
+
def result():
|
384
|
+
|
385
|
+
if request.files["image"]:
|
386
|
+
|
387
|
+
img_file = request.files["image"]
|
388
|
+
|
389
|
+
f = img_file.stream.read()
|
390
|
+
|
391
|
+
bin_data = io.BytesIO(f)
|
392
|
+
|
393
|
+
file_bytes = np.asarray(bytearray(bin_data.read()), dtype=np.uint8)
|
394
|
+
|
395
|
+
|
396
|
+
|
397
|
+
img = cv2.imdecode(file_bytes, cv2.IMREAD_COLOR)
|
398
|
+
|
399
|
+
img = cv2.resize(img, (32, 32))
|
400
|
+
|
401
|
+
|
402
|
+
|
403
|
+
in_rows = 32
|
404
|
+
|
405
|
+
in_cols = 32
|
406
|
+
|
407
|
+
in_colors = 3
|
408
|
+
|
409
|
+
|
410
|
+
|
411
|
+
labels = [
|
412
|
+
|
413
|
+
'airplane',
|
414
|
+
|
415
|
+
'automobile',
|
416
|
+
|
417
|
+
'bird',
|
418
|
+
|
419
|
+
'cat',
|
420
|
+
|
421
|
+
'deer',
|
422
|
+
|
423
|
+
'dog',
|
424
|
+
|
425
|
+
'frog',
|
426
|
+
|
427
|
+
'horse',
|
428
|
+
|
429
|
+
'ship',
|
430
|
+
|
431
|
+
'truck'
|
432
|
+
|
433
|
+
]
|
434
|
+
|
435
|
+
|
436
|
+
|
437
|
+
img = img.reshape(-1, in_rows, in_cols,
|
438
|
+
|
439
|
+
in_colors).astype("float32") / 255
|
440
|
+
|
441
|
+
|
442
|
+
|
443
|
+
with graph.as_default():
|
444
|
+
|
445
|
+
r = model.predict(img, batch_size=32, verbose=1)
|
446
|
+
|
447
|
+
res = r[0]
|
448
|
+
|
449
|
+
print(res, file=sys.stdout)
|
450
|
+
|
451
|
+
return render_template("result.html", res=res, labels=labels)
|
452
|
+
|
453
|
+
else:
|
454
|
+
|
455
|
+
return redirect(url_for('index'))
|
456
|
+
|
457
|
+
|
458
|
+
|
459
|
+
if __name__ == '__main__':
|
460
|
+
|
461
|
+
app.run(debug=True)
|
462
|
+
|
463
|
+
```
|