teratail header banner
teratail header banner
質問するログイン新規登録

回答編集履歴

2

コード修正

2019/10/08 02:38

投稿

qax
qax

スコア622

answer CHANGED
@@ -8,7 +8,7 @@
8
8
  outlier_E = np.array([0.12, 0.43, 0.29,0.87])
9
9
 
10
10
  outlier_ABCDE = np.stack([outlier_A, outlier_B, outlier_C, outlier_D, outlier_E])
11
- result = np.sort(outlier_ABCDE, axis=0)[-1]
11
+ outlier = np.sort(outlier_ABCDE, axis=0)[-1]
12
12
  ```
13
13
 
14
14
  または
@@ -23,5 +23,5 @@
23
23
  outlier_E = np.array([0.12, 0.43, 0.29,0.87])
24
24
 
25
25
  outlier_ABCDE = np.stack([outlier_A, outlier_B, outlier_C, outlier_D, outlier_E])
26
- result = np.diag(outlier_ABCDE[np.argmax(outlier_ABCDE, axis=0)])
26
+ outlier = np.diag(outlier_ABCDE[np.argmax(outlier_ABCDE, axis=0)])
27
27
  ```

1

コード修正

2019/10/08 02:38

投稿

qax
qax

スコア622

answer CHANGED
@@ -9,4 +9,19 @@
9
9
 
10
10
  outlier_ABCDE = np.stack([outlier_A, outlier_B, outlier_C, outlier_D, outlier_E])
11
11
  result = np.sort(outlier_ABCDE, axis=0)[-1]
12
+ ```
13
+
14
+ または
15
+
16
+ ```python
17
+ import numpy as np
18
+
19
+ outlier_A = np.array([0.77, 0.89, 0.68,0.92])
20
+ outlier_B = np.array([0.43, 0.91, 0.03,0.14])
21
+ outlier_C = np.array([0.23, 0.87, 0.66,0.09])
22
+ outlier_D = np.array([0.05, 0.98, 0.24,0.65])
23
+ outlier_E = np.array([0.12, 0.43, 0.29,0.87])
24
+
25
+ outlier_ABCDE = np.stack([outlier_A, outlier_B, outlier_C, outlier_D, outlier_E])
26
+ result = np.diag(outlier_ABCDE[np.argmax(outlier_ABCDE, axis=0)])
12
27
  ```