Pythonの「tensorflow」がうまく利用できません。
pip install tensorflowなどを行い、pathを通したはずですがうまくいきません。
数日前までは、添付画像のようにモジュール警告の線が引かれているのにも関わらず実行できました。
しかし、現在は実行を行っても、エラーになります。
エラー文は以下となります。
TypeError: Unable to convert function return value to a Python type! The signature was
() -> handle
また、Tracebackの内容は以下です。
Traceback (most recent call last):
File "c:\Users\K21060066\Desktop\Python学習ファイル\自然言語処理入門\chapter09\models.py", line 1, in <module>
from tensorflow.keras.models import Model
File "C:\Users\K21060066\AppData\Local\Programs\Python\Python39\lib\site-packages\tensorflow_init_.py", line 37, in <module>
from tensorflow.python.tools import module_util as module_util
File "C:\Users\K21060066\AppData\Local\Programs\Python\Python39\lib\site-packages\tensorflow\python_init.py", line 42, in <module>
from tensorflow.python import data
File "C:\Users\K21060066\AppData\Local\Programs\Python\Python39\lib\site-packages\tensorflow\python\data_init_.py", line 21, in <module>
from tensorflow.python.data import experimental
File "C:\Users\K21060066\AppData\Local\Programs\Python\Python39\lib\site-packages\tensorflow\python\data\experimental_init_.py", line 95, in <module>
from tensorflow.python.data.experimental import service
File "C:\Users\K21060066\AppData\Local\Programs\Python\Python39\lib\site-packages\tensorflow\python\data\experimental\service_init_.py", line 387, in <module>
from tensorflow.python.data.experimental.ops.data_service_ops import distribute
File "C:\Users\K21060066\AppData\Local\Programs\Python\Python39\lib\site-packages\tensorflow\python\data\experimental\ops\data_service_ops.py", line 23, in <module>
from tensorflow.python.data.experimental.ops import compression_ops
File "C:\Users\K21060066\AppData\Local\Programs\Python\Python39\lib\site-packages\tensorflow\python\data\experimental\ops\compression_ops.py", line 16, in <module>
from tensorflow.python.data.util import structure
File "C:\Users\K21060066\AppData\Local\Programs\Python\Python39\lib\site-packages\tensorflow\python\data\util\structure.py", line 22, in <module>
from tensorflow.python.data.util import nest
File "C:\Users\K21060066\AppData\Local\Programs\Python\Python39\lib\site-packages\tensorflow\python\data\util\nest.py", line 36, in <module>
from tensorflow.python.framework import sparse_tensor as _sparse_tensor
File "C:\Users\K21060066\AppData\Local\Programs\Python\Python39\lib\site-packages\tensorflow\python\framework\sparse_tensor.py", line 24, in <module>
from tensorflow.python.framework import constant_op
File "C:\Users\K21060066\AppData\Local\Programs\Python\Python39\lib\site-packages\tensorflow\python\framework\constant_op.py", line 25, in <module>
from tensorflow.python.eager import execute
File "C:\Users\K21060066\AppData\Local\Programs\Python\Python39\lib\site-packages\tensorflow\python\eager\execute.py", line 23, in <module>
from tensorflow.python.framework import dtypes
File "C:\Users\K21060066\AppData\Local\Programs\Python\Python39\lib\site-packages\tensorflow\python\framework\dtypes.py", line 29, in <module>
_np_bfloat16 = _pywrap_bfloat16.TF_bfloat16_type()
TypeError: Unable to convert function return value to a Python type! The signature was
() -> handle
ライブラリのtensorflow付近のリストは以下のようになっています。
もし、この辺に精通している方がいらしましたら、ぜひご教授ください。
また、現在はanacondaの利用はできないのでご容赦ください。
python
1#models.py 2from tensorflow.keras.models import Model 3from tensorflow.keras.layers import Dense, Input, Embedding, SimpleRNN, LSTM, Conv1D, GlobalMaxPooling1D 4 5 6class RNNModel: 7 8 def __init__(self, input_dim, output_dim, 9 emb_dim=300, hid_dim=100, 10 embeddings=None, trainable=True): 11 self.input = Input(shape=(None,), name='input') 12 if embeddings is None: 13 self.embedding = Embedding(input_dim=input_dim, 14 output_dim=emb_dim, 15 mask_zero=True, 16 trainable=trainable, 17 name='embedding') 18 else: 19 self.embedding = Embedding(input_dim=embeddings.shape[0], 20 output_dim=embeddings.shape[1], 21 mask_zero=True, 22 trainable=trainable, 23 weights=[embeddings], 24 name='embedding') 25 self.rnn = SimpleRNN(hid_dim, name='rnn') 26 self.fc = Dense(output_dim, activation='softmax') 27 28 def build(self): 29 x = self.input 30 embedding = self.embedding(x) 31 output = self.rnn(embedding) 32 y = self.fc(output) 33 return Model(inputs=x, outputs=y) 34 35 36class LSTMModel: 37 38 def __init__(self, input_dim, output_dim, 39 emb_dim=300, hid_dim=100, 40 embeddings=None, trainable=True): 41 self.input = Input(shape=(None,), name='input') 42 if embeddings is None: 43 self.embedding = Embedding(input_dim=input_dim, 44 output_dim=emb_dim, 45 mask_zero=True, 46 trainable=trainable, 47 name='embedding') 48 else: 49 self.embedding = Embedding(input_dim=embeddings.shape[0], 50 output_dim=embeddings.shape[1], 51 mask_zero=True, 52 trainable=trainable, 53 weights=[embeddings], 54 name='embedding') 55 self.lstm = LSTM(hid_dim, name='lstm') 56 self.fc = Dense(output_dim, activation='softmax') 57 58 def build(self): 59 x = self.input 60 embedding = self.embedding(x) 61 output = self.lstm(embedding) 62 y = self.fc(output) 63 return Model(inputs=x, outputs=y) 64 65 66class CNNModel: 67 68 def __init__(self, input_dim, output_dim, 69 filters=250, kernel_size=3, 70 emb_dim=300, embeddings=None, trainable=True): 71 self.input = Input(shape=(None,), name='input') 72 if embeddings is None: 73 self.embedding = Embedding(input_dim=input_dim, 74 output_dim=emb_dim, 75 trainable=trainable, 76 name='embedding') 77 else: 78 self.embedding = Embedding(input_dim=embeddings.shape[0], 79 output_dim=embeddings.shape[1], 80 trainable=trainable, 81 weights=[embeddings], 82 name='embedding') 83 self.conv = Conv1D(filters, 84 kernel_size, 85 padding='valid', 86 activation='relu', 87 strides=1) 88 self.pool = GlobalMaxPooling1D() 89 self.fc = Dense(output_dim, activation='softmax') 90 91 def build(self): 92 x = self.input 93 embedding = self.embedding(x) 94 conv = self.conv(embedding) 95 pool = self.pool(conv) 96 y = self.fc(pool) 97 return Model(inputs=x, outputs=y) 98 99 100class LSTMCNNModel: 101 102 def __init__(self, input_dim, output_dim, 103 filters=250, kernel_size=3, 104 emb_dim=300, hid_dim=100, embeddings=None): 105 self.input = Input(shape=(None,), name='input') 106 if embeddings is None: 107 self.embedding = Embedding(input_dim=input_dim, 108 output_dim=emb_dim, 109 mask_zero=True, 110 name='embedding') 111 else: 112 self.embedding = Embedding(input_dim=embeddings.shape[0], 113 output_dim=embeddings.shape[1], 114 mask_zero=True, 115 weights=[embeddings], 116 name='embedding') 117 self.lstm = LSTM(hid_dim, return_sequences=True, name='lstm') 118 self.conv = Conv1D(filters, 119 kernel_size, 120 padding='valid', 121 activation='relu', 122 strides=1) 123 self.pool = GlobalMaxPooling1D() 124 self.fc1 = Dense(hid_dim) 125 self.fc2 = Dense(output_dim, activation='softmax') 126 127 def build(self): 128 x = self.input 129 embedding = self.embedding(x) 130 lstm = self.lstm(embedding) 131 conv = self.conv(lstm) 132 pool = self.pool(conv) 133 y = self.fc1(pool) 134 y = self.fc2(y) 135 return Model(inputs=x, outputs=y) 136

回答1件
あなたの回答
tips
プレビュー