閲覧いただきありがとうございます。
オートエンコーダの層について、
641281
→326432
→163264
→512
→64
→512
→163264
→326432
→641281
という風に構築したいのですが、作成したモデルをmodel.sumamary()で確認したところ想定したモデル構成とは違って見えるため、質問いたしました。
間違っている箇所や思考の違う箇所等指摘していただけると幸いです。
Python
1input_img = Input(shape=(64, 128,)) 2hidden = Reshape((64, 128, 1), input_shape = (64, 128))(input_img) 3x = Conv2D(16, (3, 3), padding='same')(hidden) 4x = BatchNormalization()(x) 5x = Activation('relu')(x) 6x = Conv2D(32, (3, 3), padding='same')(x) 7x = BatchNormalization()(x) 8x = Activation('relu')(x) 9x = MaxPooling2D((2, 2), padding='same')(x) 10x = Conv2D(64, (3, 3), padding='same')(x) 11x = BatchNormalization()(x) 12x = Activation('relu')(x) 13encoded = MaxPooling2D((2, 2), padding='same')(x) 14 15flatten = Dense(512, activation='relu')(encoded) 16flatten = Dropout(0.2)(flatten) 17flatten = Dense(64, activation='relu')(flatten) 18flatten = Dropout(0.2)(flatten) 19flatten = Dense(512, activation='relu')(flatten) 20 21encoded_input = Conv2D(64, (3, 3), padding='same')(flatten) 22x = BatchNormalization()(encoded_input) 23x = Activation('relu')(x) 24x = UpSampling2D((2, 2))(x) 25x = Conv2D(32, (3, 3), padding='same')(x) 26x = BatchNormalization()(x) 27x = Activation('relu')(x) 28x = UpSampling2D((2, 2))(x) 29x = Conv2D(16, (3, 3), padding='same')(x) 30x = BatchNormalization()(x) 31x = Activation('relu')(x) 32x = Conv2D(1, (3, 3), padding='same')(x) 33x = BatchNormalization()(x) 34decoded = Activation('sigmoid')(x) 35 36autoencoder = Model(input_img, decoded)
Model: "model_7"
Layer (type) Output Shape Param #
input_8 (InputLayer) [(None, 64, 128)] 0
reshape_7 (Reshape) (None, 64, 128, 1) 0
conv2d_49 (Conv2D) (None, 64, 128, 64) 640
batch_normalization_49 (Bat (None, 64, 128, 64) 256
chNormalization)
activation_49 (Activation) (None, 64, 128, 64) 0
conv2d_50 (Conv2D) (None, 64, 128, 32) 18464
batch_normalization_50 (Bat (None, 64, 128, 32) 128
chNormalization)
activation_50 (Activation) (None, 64, 128, 32) 0
max_pooling2d_14 (MaxPoolin (None, 32, 64, 32) 0
g2D)
conv2d_51 (Conv2D) (None, 32, 64, 16) 4624
batch_normalization_51 (Bat (None, 32, 64, 16) 64
chNormalization)
activation_51 (Activation) (None, 32, 64, 16) 0
max_pooling2d_15 (MaxPoolin (None, 16, 32, 16) 0
g2D)
dense_15 (Dense) (None, 16, 32, 512) 8704
dropout_12 (Dropout) (None, 16, 32, 512) 0
dense_16 (Dense) (None, 16, 32, 64) 32832
dropout_13 (Dropout) (None, 16, 32, 64) 0
conv2d_52 (Conv2D) (None, 16, 32, 16) 9232
batch_normalization_52 (Bat (None, 16, 32, 16) 64
chNormalization)
activation_52 (Activation) (None, 16, 32, 16) 0
up_sampling2d_14 (UpSamplin (None, 32, 64, 16) 0
g2D)
conv2d_53 (Conv2D) (None, 32, 64, 32) 4640
batch_normalization_53 (Bat (None, 32, 64, 32) 128
chNormalization)
activation_53 (Activation) (None, 32, 64, 32) 0
up_sampling2d_15 (UpSamplin (None, 64, 128, 32) 0
g2D)
conv2d_54 (Conv2D) (None, 64, 128, 64) 18496
batch_normalization_54 (Bat (None, 64, 128, 64) 256
chNormalization)
activation_54 (Activation) (None, 64, 128, 64) 0
conv2d_55 (Conv2D) (None, 64, 128, 1) 577
batch_normalization_55 (Bat (None, 64, 128, 1) 4
chNormalization)
activation_55 (Activation) (None, 64, 128, 1) 0
=================================================================
Total params: 99,109
Trainable params: 98,659
Non-trainable params: 450
よろしくお願いいたします。
あなたの回答
tips
プレビュー