質問をすることでしか得られない、回答やアドバイスがある。

15分調べてもわからないことは、質問しよう!

新規登録して質問してみよう
ただいま回答率
86.12%
Jupyter

Jupyter (旧IPython notebook)は、Notebook形式でドキュメント作成し、プログラムの記述・実行、その実行結果を記録するツールです。メモの作成や保存、共有、確認などもブラウザ上で行うことができます。

コードレビュー

コードレビューは、ソフトウェア開発の一工程で、 ソースコードの検査を行い、開発工程で見過ごされた誤りを検出する事で、 ソフトウェア品質を高めるためのものです。

Python

Pythonは、コードの読みやすさが特徴的なプログラミング言語の1つです。 強い型付け、動的型付けに対応しており、後方互換性がないバージョン2系とバージョン3系が使用されています。 商用製品の開発にも無料で使用でき、OSだけでなく仮想環境にも対応。Unicodeによる文字列操作をサポートしているため、日本語処理も標準で可能です。

自然言語処理

自然言語処理は、日常的に使用される自然言語をコンピューターに処理させる技術やソフトウェアの総称です。

解決済

Word2Vecでmost_similarモジュールを使うとAtributeErrorが出てしまいます(Mac)。

san_3_san
san_3_san

総合スコア7

Jupyter

Jupyter (旧IPython notebook)は、Notebook形式でドキュメント作成し、プログラムの記述・実行、その実行結果を記録するツールです。メモの作成や保存、共有、確認などもブラウザ上で行うことができます。

コードレビュー

コードレビューは、ソフトウェア開発の一工程で、 ソースコードの検査を行い、開発工程で見過ごされた誤りを検出する事で、 ソフトウェア品質を高めるためのものです。

Python

Pythonは、コードの読みやすさが特徴的なプログラミング言語の1つです。 強い型付け、動的型付けに対応しており、後方互換性がないバージョン2系とバージョン3系が使用されています。 商用製品の開発にも無料で使用でき、OSだけでなく仮想環境にも対応。Unicodeによる文字列操作をサポートしているため、日本語処理も標準で可能です。

自然言語処理

自然言語処理は、日常的に使用される自然言語をコンピューターに処理させる技術やソフトウェアの総称です。

1回答

0リアクション

0クリップ

2727閲覧

投稿2021/10/02 08:05

Aidemyの自然言語処理基礎コース内のWord2Vecの実装をローカルのjupyter notebookで再現しようとしていますが、うまく出来ません。

コードを打つと以下のエラーが出てきます。
また実行したコードを以下に記します。なお、textのディレクトリにlivedoor newsコーパス (https://www.rondhuit.com/download.html よりダウンロード)
のテキストファイルが格納されています。**

**このエラーがでないようにする対処方法を教えて頂けるとありがたいです。
よろしくお願いいたします

AttributeError Traceback (most recent call last) <ipython-input-35-07c46619802b> in <module> 47 #word2vec.Word2Vecの引数に関して、size=100, min_count=20, window=15としてください 48 model = word2vec.Word2Vec(sentences, vector_size=100, min_count=20, window=15) ---> 49 print(model.most_similar(positive=['男'])) AttributeError: 'Word2Vec' object has no attribute 'most_similar' **また実行したコードを以下に記します。なお、textのディレクトリにlivedoor newsコーパス (https://www.rondhuit.com/download.html よりダウンロード) のテキストファイルが格納されています。** **このエラーがでないようにする対処方法を教えて頂けるとありがたいです。 よろしくお願いいたします。** import glob from janome.tokenizer import Tokenizer from gensim.models import word2vec def load_livedoor_news_corpus(): category = { "peachy":1, "smax":2 } texts = [] labels = [] for name, label in category.items(): files = glob.glob("text/{name}/{name}*.txt".format(name=name)) for file in files: with open(file, "r", encoding="utf-8") as f: lines = f.read().splitlines() text = "".join(lines[2:]) texts.append(text) labels.append(label) return texts, labels def tokenize(part): tokens = t.tokenize(",".join(part)) word = [] for token in tokens: part_of_speech = token.part_of_speech.split(",")[0] if part_of_speech in ["名詞", "動詞", "形容詞", "形容動詞"]: word.append(token.surface) return word texts, labels = load_livedoor_news_corpus() t = Tokenizer() # 最初にTokenizerインスタンスを作成する sentences = tokenize(texts[0:100]) # データ量が多いため制限している ```ここに言語を入力 ```ここに言語を入力 model = word2vec.Word2Vec(sentences, vector_size=100, min_count=20, window=15) print(model.most_similar(positive=['男']))

以下のような質問にはリアクションをつけましょう

  • 質問内容が明確
  • 自分も答えを知りたい
  • 質問者以外のユーザにも役立つ

リアクションが多い質問は、TOPページの「注目」タブのフィードに表示されやすくなります。

気になる質問をクリップする

クリップした質問は、後からいつでもマイページで確認できます。

またクリップした質問に回答があった際、通知やメールを受け取ることができます。

下記のような質問は推奨されていません。

  • 間違っている
  • 質問になっていない投稿
  • スパムや攻撃的な表現を用いた投稿

適切な質問に修正を依頼しましょう。

まだ回答がついていません

会員登録して回答してみよう

アカウントをお持ちの方は

15分調べてもわからないことは
teratailで質問しよう!

ただいまの回答率
86.12%

質問をまとめることで
思考を整理して素早く解決

テンプレート機能で
簡単に質問をまとめる

質問する

関連した質問

同じタグがついた質問を見る

Jupyter

Jupyter (旧IPython notebook)は、Notebook形式でドキュメント作成し、プログラムの記述・実行、その実行結果を記録するツールです。メモの作成や保存、共有、確認などもブラウザ上で行うことができます。

コードレビュー

コードレビューは、ソフトウェア開発の一工程で、 ソースコードの検査を行い、開発工程で見過ごされた誤りを検出する事で、 ソフトウェア品質を高めるためのものです。

Python

Pythonは、コードの読みやすさが特徴的なプログラミング言語の1つです。 強い型付け、動的型付けに対応しており、後方互換性がないバージョン2系とバージョン3系が使用されています。 商用製品の開発にも無料で使用でき、OSだけでなく仮想環境にも対応。Unicodeによる文字列操作をサポートしているため、日本語処理も標準で可能です。

自然言語処理

自然言語処理は、日常的に使用される自然言語をコンピューターに処理させる技術やソフトウェアの総称です。