前提・実現したいこと
pytorchを使ったResnetの実装をgooglecolabで試しており、下記のコードに学習後、trainとvalのaccとlossの値を表示させかつグラフも表示させたいのですがどうしたらよいでしょうか。
コードはこちらのサイトのものを使っています。
https://blog.neko-ni-naritai.com/entry/2019/06/03/234651#%E5%8E%9F%E8%AB%96%E6%96%87%E3%81%A8%E3%81%AE%E5%B7%AE%E7%95%B0
該当のソースコード
def validate(net, validloader): """ epoch毎に性能評価をするための関数 """ net.eval() correct = 0 total = 0 preds = torch.tensor([]).float().to(device) trues = torch.tensor([]).long().to(device) with torch.no_grad(): for data in validloader: images, labels = data images, labels = images.to(device), labels.to(device) outputs = net(images) _, predicted = torch.max(outputs.data, 1) total += labels.size(0) correct += (predicted == labels).sum().item() preds = torch.cat((preds, outputs)) trues = torch.cat((trues, labels)) val_loss = criterion(preds, trues) err_rate = 100 * (1 - correct / total) return val_loss, err_rate # 学習用に必要なインスタンスを作成 net = ResNet50().to(device) criterion = nn.CrossEntropyLoss() optimizer = optim.SGD(net.parameters(), lr=0.01, momentum=0.9, weight_decay=0.0001) scheduler = ReduceLROnPlateau( optimizer, mode='min', factor=0.1, patience=10, verbose=True ) # ロギング用のリスト log = {'train_loss':[], 'val_loss': [], 'train_err_rate': [], 'val_err_rate': []} N_EPOCH = 40 # 学習を実行 for epoch in tqdm(range(N_EPOCH)): net.train() for i, data in tqdm(enumerate(trainloader, 0)): # get the inputs inputs, labels = data inputs, labels = inputs.to(device), labels.to(device) # zero the parameter gradients optimizer.zero_grad() # forward + backward + optimize outputs = net(inputs) loss = criterion(outputs, labels) loss.backward() optimizer.step() # epoch内でのlossを確認 if i % 100 == 0: print(loss) else: # trainとvalに対する指標を計算 train_loss, train_err_rate = validate(net, trainloader) val_loss, val_err_rate = validate(net, validloader) log['train_loss'].append(train_loss.item()) log['val_loss'].append(val_loss.item()) log['val_err_rate'].append(val_err_rate) log['train_err_rate'].append(train_err_rate) print(loss) print(f'train_err_rate:\t{train_err_rate:.1f}') print(f'val_err_rate:\t{val_err_rate:.1f}') scheduler.step(val_loss) else: print('Finished Training')
あなたの回答
tips
プレビュー