質問をすることでしか得られない、回答やアドバイスがある。

15分調べてもわからないことは、質問しよう!

新規登録して質問してみよう
ただいま回答率
87.20%
Python

Pythonは、コードの読みやすさが特徴的なプログラミング言語の1つです。 強い型付け、動的型付けに対応しており、後方互換性がないバージョン2系とバージョン3系が使用されています。 商用製品の開発にも無料で使用でき、OSだけでなく仮想環境にも対応。Unicodeによる文字列操作をサポートしているため、日本語処理も標準で可能です。

解決済

ValueError: too many values to unpack解決したい

cano
cano

総合スコア2

Python

Pythonは、コードの読みやすさが特徴的なプログラミング言語の1つです。 強い型付け、動的型付けに対応しており、後方互換性がないバージョン2系とバージョン3系が使用されています。 商用製品の開発にも無料で使用でき、OSだけでなく仮想環境にも対応。Unicodeによる文字列操作をサポートしているため、日本語処理も標準で可能です。

1回答

0評価

0クリップ

1586閲覧

投稿2021/09/13 18:08

編集2021/09/14 07:42

前提・実現したいこと

pytorchを使ったResnetの実装を試しており、とりあえずweb上のコードをコピペしてGoogle colabolatoryで動作を見ようとしていたのですがデータを用意する段階でエラーが出てしまい
解決できず困っています。

発生している問題・エラーメッセージ

ValueError Traceback (most recent call last)
<ipython-input-7-9a3ab776c106> in <module>()
92 BATCH_SIZE = 128
93 path = "/content/drive/MyDrive/Colab Notebooks/dataset/cifar-10-batches-py"
---> 94 train,test = load_data(path)
95
96

ValueError: too many values to unpack (expected 2)

該当のソースコード

import os from keras.utils import np_utils import matplotlib.pyplot as plt %matplotlib inline import numpy as np from PIL import Image from tqdm import tqdm_notebook as tqdm import torch from torch.utils.data import Dataset, DataLoader import torchvision import torchvision.transforms as transforms def load_data(path): """ Load CIFAR10 data Reference: https://www.kaggle.com/vassiliskrikonis/cifar-10-analysis-with-a-neural-network/data """ def _load_batch_file(batch_filename): filepath = os.path.join(path, batch_filename) unpickled = _unpickle(filepath) return unpickled def _unpickle(file): import pickle with open(file, 'rb') as fo: dict = pickle.load(fo, encoding='latin') return dict train_batch_1 = _load_batch_file('data_batch_1') train_batch_2 = _load_batch_file('data_batch_2') train_batch_3 = _load_batch_file('data_batch_3') train_batch_4 = _load_batch_file('data_batch_4') train_batch_5 = _load_batch_file('data_batch_5') test_batch = _load_batch_file('test_batch') num_classes = 10 batches = [train_batch_1['data'], train_batch_2['data'], train_batch_3['data'], train_batch_4['data'], train_batch_5['data']] train_x = np.concatenate(batches) train_x = train_x.astype('float32') # this is necessary for the division below train_y = np.concatenate([np_utils.to_categorical(labels, num_classes) for labels in [train_batch_1['labels'], train_batch_2['labels'], train_batch_3['labels'], train_batch_4['labels'], train_batch_5['labels']]]) test_x = test_batch['data'].astype('float32') #/ 255 test_y = np_utils.to_categorical(test_batch['labels'], num_classes) print(num_classes) img_rows, img_cols = 32, 32 channels = 3 print(train_x.shape) train_x = train_x.reshape(len(train_x), channels, img_rows, img_cols) test_x = test_x.reshape(len(test_x), channels, img_rows, img_cols) train_x = train_x.transpose((0, 2, 3, 1)) test_x = test_x.transpose((0, 2, 3, 1)) per_pixel_mean = (train_x).mean(0) # 計算はするが使用しない train_x = [Image.fromarray(img.astype(np.uint8)) for img in train_x] test_x = [Image.fromarray(img.astype(np.uint8)) for img in test_x] train = [(x,np.argmax(y)) for x, y in zip(train_x, train_y)] test = [(x,np.argmax(y)) for x, y in zip(test_x, test_y)] return train, test, per_pixel_mean class ImageDataset(Dataset): """ データにtransformsを適用するためのクラス """ def __init__(self, data, transform=None): self.data = data self.transform = transform def __len__(self): return len(self.data) def __getitem__(self, idx): img, label = self.data[idx] if self.transform: img = self.transform(img) return img, label # Googleドライブのマウント from google.colab import drive drive.mount('./drive') BATCH_SIZE = 128 path = "/content/drive/MyDrive/Colab Notebooks/dataset/cifar-10-batches-py" train, test = load_data(path) # train dataの作成 train_transform = torchvision.transforms.Compose([ transforms.RandomHorizontalFlip(), transforms.Lambda(lambda img: np.array(img)), transforms.ToTensor(), transforms.Lambda(lambda img: img.float()), ]) train_dataset = ImageDataset(train[:45000], transform=train_transform) trainloader = DataLoader(train_dataset, batch_size=BATCH_SIZE, shuffle=True, num_workers=0) # validation data, test dataの作成 valtest_transform = torchvision.transforms.Compose([ torchvision.transforms.Lambda(lambda img: np.array(img)), transforms.ToTensor(), transforms.Lambda(lambda img: img.float()), ]) valid_dataset = ImageDataset(train[45000:], transform=valtest_transform) validloader = DataLoader(valid_dataset, batch_size=BATCH_SIZE, shuffle=True, num_workers=0) test_dataset = ImageDataset(test, transform=valtest_transform) testloader = DataLoader(test_dataset, batch_size=BATCH_SIZE, shuffle=True, num_workers=0)

試したこと

補足情報(FW/ツールのバージョンなど)

こちらのサイトのコードを使っています。
https://blog.neko-ni-naritai.com/entry/2019/06/03/234651

良い質問の評価を上げる

以下のような質問は評価を上げましょう

  • 質問内容が明確
  • 自分も答えを知りたい
  • 質問者以外のユーザにも役立つ

評価が高い質問は、TOPページの「注目」タブのフィードに表示されやすくなります。

気になる質問をクリップする

クリップした質問は、後からいつでもマイページで確認できます。

またクリップした質問に回答があった際、通知やメールを受け取ることができます。

teratailでは下記のような質問を「具体的に困っていることがない質問」、「サイトポリシーに違反する質問」と定義し、推奨していません。

  • プログラミングに関係のない質問
  • やってほしいことだけを記載した丸投げの質問
  • 問題・課題が含まれていない質問
  • 意図的に内容が抹消された質問
  • 過去に投稿した質問と同じ内容の質問
  • 広告と受け取られるような投稿

評価を下げると、トップページの「アクティブ」「注目」タブのフィードに表示されにくくなります。

y_waiwai

2021/09/13 23:40

このままではコードが読めないので、質問を編集し、<code>ボタンを押し、出てくる’’’の枠の中にコードを貼り付けてください
cano

2021/09/14 07:44

返信が遅くなってしまいすみません。編集しましたのでコードを読めると思います。

まだ回答がついていません

会員登録して回答してみよう

15分調べてもわからないことは
teratailで質問しよう!

ただいまの回答率
87.20%

質問をまとめることで
思考を整理して素早く解決

テンプレート機能で
簡単に質問をまとめる

質問する

関連した質問

同じタグがついた質問を見る

Python

Pythonは、コードの読みやすさが特徴的なプログラミング言語の1つです。 強い型付け、動的型付けに対応しており、後方互換性がないバージョン2系とバージョン3系が使用されています。 商用製品の開発にも無料で使用でき、OSだけでなく仮想環境にも対応。Unicodeによる文字列操作をサポートしているため、日本語処理も標準で可能です。