質問をすることでしか得られない、回答やアドバイスがある。

15分調べてもわからないことは、質問しよう!

新規登録して質問してみよう
ただいま回答率
85.37%
Jupyter

Jupyter (旧IPython notebook)は、Notebook形式でドキュメント作成し、プログラムの記述・実行、その実行結果を記録するツールです。メモの作成や保存、共有、確認などもブラウザ上で行うことができます。

深層学習

深層学習は、多数のレイヤのニューラルネットワークによる機械学習手法。人工知能研究の一つでディープラーニングとも呼ばれています。コンピューター自体がデータの潜在的な特徴を汲み取り、効率的で的確な判断を実現することができます。

Google Colaboratory

Google Colaboratoryとは、無償のJupyterノートブック環境。教育や研究機関の機械学習の普及のためのGoogleの研究プロジェクトです。PythonやNumpyといった機械学習で要する大方の環境がすでに構築されており、コードの記述・実行、解析の保存・共有などが可能です。

PyTorch

PyTorchは、オープンソースのPython向けの機械学習ライブラリ。Facebookの人工知能研究グループが開発を主導しています。強力なGPUサポートを備えたテンソル計算、テープベースの自動微分による柔軟なニューラルネットワークの記述が可能です。

機械学習

機械学習は、データからパターンを自動的に発見し、そこから知能的な判断を下すためのコンピューターアルゴリズムを指します。人工知能における課題のひとつです。

Q&A

解決済

1回答

4143閲覧

Google Colaboratory 上で重みモデル.pthをロードできない

sugar_s

総合スコア8

Jupyter

Jupyter (旧IPython notebook)は、Notebook形式でドキュメント作成し、プログラムの記述・実行、その実行結果を記録するツールです。メモの作成や保存、共有、確認などもブラウザ上で行うことができます。

深層学習

深層学習は、多数のレイヤのニューラルネットワークによる機械学習手法。人工知能研究の一つでディープラーニングとも呼ばれています。コンピューター自体がデータの潜在的な特徴を汲み取り、効率的で的確な判断を実現することができます。

Google Colaboratory

Google Colaboratoryとは、無償のJupyterノートブック環境。教育や研究機関の機械学習の普及のためのGoogleの研究プロジェクトです。PythonやNumpyといった機械学習で要する大方の環境がすでに構築されており、コードの記述・実行、解析の保存・共有などが可能です。

PyTorch

PyTorchは、オープンソースのPython向けの機械学習ライブラリ。Facebookの人工知能研究グループが開発を主導しています。強力なGPUサポートを備えたテンソル計算、テープベースの自動微分による柔軟なニューラルネットワークの記述が可能です。

機械学習

機械学習は、データからパターンを自動的に発見し、そこから知能的な判断を下すためのコンピューターアルゴリズムを指します。人工知能における課題のひとつです。

0グッド

0クリップ

投稿2021/08/30 10:01

実現したいこと

Google colaboratory上で自前の重みモデルkanji.pthをロードし学習したいです。
くずし字の漢字を検出・認識するプログラムを作っています。
現在
Create Pytorch Dataset for Classifying Characters

内にあるDemoModel↓

class DemoModel(torch.nn.Module): def __init__(self): super(DemoModel, self).__init__() self.conv1 = torch.nn.Conv2d(in_channels=1, out_channels=16, kernel_size=7) self.relu1 = torch.nn.ReLU(inplace=True) self.maxpool1 = torch.nn.MaxPool2d(kernel_size=2) self.conv2 = torch.nn.Conv2d(in_channels=16, out_channels=128, kernel_size=6) self.relu2 = torch.nn.ReLU(inplace=True) self.maxpool2 = torch.nn.MaxPool2d(kernel_size=2) self.fc = torch.nn.Linear(in_features=128*8*8, out_features=4212, bias=True) self.log_softmax = torch.nn.LogSoftmax(dim=-1) def forward(self, x): out = self.conv1(x) # (batch, 1, 48, 48) -> (batch, 16, 42, 42) out = self.relu1(out) out = self.maxpool1(out) # (batch, 16, 42, 42) -> (batch, 16, 21, 21) out = self.conv2(out) # (batch, 16, 21, 21) -> (batch, 128, 16, 16) out = self.relu2(out) out = self.maxpool2(out) # (batch, 128, 16, 16) -> (batch, 128, 8, 8) out = out.view(out.size(0), -1) # (batch, 128, 8, 8) -> (batch, 8192) out = self.fc(out) # (batch, 8192) -> (batch, 4212) out = self.log_softmax(out) return out


Create Pytorch Dataset for Classifying Characters
に書かれている方法で学習した後、
torch.save(DemoModel().state_dict(),'/content/drive/MyDrive/Colab Notebooks/Kuzushiji_Visualisation/' + 'kanji' + '.pth')
で保存したモデルで物体検出を行おうとしたところ以下のエラーメッセージが発生しました。

発生している問題・エラーメッセージ

Loading weights into state dict... --------------------------------------------------------------------------- RuntimeError Traceback (most recent call last) <ipython-input-19-88fdfbbc72bc> in <module>() 17 net = build_ssd('test', 300, 4213) 18 #net = build_ssd('test', 300, 21) ---> 19 net.load_weights('/content/drive/MyDrive/Colab Notebooks/Kuzushiji_Visualisation/kanji.pth') 20 #net.load_weights('/content/drive/MyDrive/Colab Notebooks/chapter7/weights/ssd300_mAP_77.43_v2.pth') 21 1 frames /usr/local/lib/python3.7/dist-packages/torch/nn/modules/module.py in load_state_dict(self, state_dict, strict) 1405 if len(error_msgs) > 0: 1406 raise RuntimeError('Error(s) in loading state_dict for {}:\n\t{}'.format( -> 1407 self.__class__.__name__, "\n\t".join(error_msgs))) 1408 return _IncompatibleKeys(missing_keys, unexpected_keys) 1409 RuntimeError: Error(s) in loading state_dict for SSD: Missing key(s) in state_dict: "vgg.0.weight", "vgg.0.bias", "vgg.2.weight", "vgg.2.bias", "vgg.5.weight", "vgg.5.bias", "vgg.7.weight", "vgg.7.bias", "vgg.10.weight", "vgg.10.bias", "vgg.12.weight", "vgg.12.bias", "vgg.14.weight", "vgg.14.bias", "vgg.17.weight", "vgg.17.bias", "vgg.19.weight", "vgg.19.bias", "vgg.21.weight", "vgg.21.bias", "vgg.24.weight", "vgg.24.bias", "vgg.26.weight", "vgg.26.bias", "vgg.28.weight", "vgg.28.bias", "vgg.31.weight", "vgg.31.bias", "vgg.33.weight", "vgg.33.bias", "L2Norm.weight", "extras.0.weight", "extras.0.bias", "extras.1.weight", "extras.1.bias", "extras.2.weight", "extras.2.bias", "extras.3.weight", "extras.3.bias", "extras.4.weight", "extras.4.bias", "extras.5.weight", "extras.5.bias", "extras.6.weight", "extras.6.bias", "extras.7.weight", "extras.7.bias", "loc.0.weight", "loc.0.bias", "loc.1.weight", "loc.1.bias", "loc.2.weight", "loc.2.bias", "loc.3.weight", "loc.3.bias", "loc.4.weight", "loc.4.bias", "loc.5.weight", "loc.5.bias", "conf.0.weight", "conf.0.bias", "conf.1.weight", "conf.1.bias", "conf.2.weight", "conf.2.bias", "conf.3.weight", "conf.3.bias", "conf.4.weight", "conf.4.bias", "conf.5.weight", "conf.5.bias". Unexpected key(s) in state_dict: "conv1.weight", "conv1.bias", "conv2.weight", "conv2.bias", "fc.weight", "fc.bias".

該当のソースコード

PyTorch 学習済みモデルでサクッと物体検出をしてみる
上記のサイトを参考にさせていただきました。
下記は学習済みモデルkanji.pthを使用して物体検出をするプログラムです。
build_ssdコマンドに与えている4213という数字は今回検出する漢字の種類+1の値です。(4212+1)
漢字の種類の個数については
Create Pytorch Dataset for Classifying Characters
内にあるuc_list(漢字を検出するためのUNICODEのリストです)の個数をpandasを使用し確認しました。

ipynb

1import os 2import sys 3module_path = os.path.abspath(os.path.join('..')) 4if module_path not in sys.path: 5 sys.path.append(module_path) 6 7import torch 8import torch.nn as nn 9from torch.autograd import Variable 10import numpy as np 11import cv2 12import glob 13from ssd import build_ssd 14from matplotlib import pyplot as plt 15 16# SSDモデルを読み込み 17net = build_ssd('test', 300, 4213) 18#net = build_ssd('test', 300, 21) 19net.load_weights('/content/drive/MyDrive/Colab Notebooks/Kuzushiji_Visualisation/kanji.pth') 20#net.load_weights('/content/drive/MyDrive/Colab Notebooks/chapter7/weights/ssd300_mAP_77.43_v2.pth') 21 22# 関数 detect 23def detect(image, count): 24 rgb_image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB) 25 x = cv2.resize(image, (300, 300)).astype(np.float32) # 300*300にリサイズ 26 x -= (104.0, 117.0, 123.0) 27 x = x.astype(np.float32) 28 x = x[:, :, ::-1].copy() 29 x = torch.from_numpy(x).permute(2, 0, 1) # [300,300,3]→[3,300,300] 30 xx = Variable(x.unsqueeze(0)) # [3,300,300]→[1,3,300,300] 31 # 順伝播を実行し、推論結果を出力 32 y = net(xx) 33 34 from data import VOC_CLASSES as labels 35 plt.figure(figsize=(10,6)) 36 colors = plt.cm.hsv(np.linspace(0, 1, 21)).tolist() 37 plt.imshow(rgb_image) 38 currentAxis = plt.gca() 39 # 推論結果をdetectionsに格納 40 detections = y.data 41 # scale each detection back up to the image 42 scale = torch.Tensor(rgb_image.shape[1::-1]).repeat(2) 43 44 # バウンディングボックスとクラス名を表示 45 for i in range(detections.size(1)): 46 j = 0 47 # 確信度confが0.6以上のボックスを表示 48 # jは確信度上位200件のボックスのインデックス 49 # detections[0,i,j]は[conf,xmin,ymin,xmax,ymax]の形状 50 while detections[0,i,j,0] >= 0.6: 51 score = detections[0,i,j,0] 52 label_name = labels[i-1] 53 display_txt = '%s: %.2f'%(label_name, score) 54 pt = (detections[0,i,j,1:]*scale).cpu().numpy() 55 coords = (pt[0], pt[1]), pt[2]-pt[0]+1, pt[3]-pt[1]+1 56 color = colors[i] 57 currentAxis.add_patch(plt.Rectangle(*coords, fill=False, edgecolor=color, linewidth=2)) 58 currentAxis.text(pt[0], pt[1], display_txt, bbox={'facecolor':color, 'alpha':0.5}) 59 j+=1 60 plt.savefig('/content/drive/MyDrive/Colab Notebooks/Kuzushiji_Visualisation/detect_img/'+'{0:04d}'.format(count)+'.jpg') 61 plt.close() 62 63def main(): 64 files = sorted(glob.glob('/content/drive/MyDrive/Colab Notebooks/Kuzushiji_Visualisation/image_dir/*.jpg')) 65 count = 1 66 for i, file in enumerate (files): 67 image = cv2.imread(file, cv2.IMREAD_COLOR) 68 detect(image, count) 69 print(count) 70 count +=1 71 72if __name__ == '__main__': 73 main()

試したこと

net = build_ssd('test', 300, 4213)
を削除し
net = DemoModel()
を実行しロードを試みたのですが、

--------------------------------------------------------------------------- AttributeError Traceback (most recent call last) <ipython-input-20-b619b3184e9c> in <module>() 18 #net = build_ssd('test', 300, 4213) 19 #net = build_ssd('test', 300, 21) ---> 20 net.load_weights('/content/drive/MyDrive/Colab Notebooks/Kuzushiji_Visualisation/kanji.pth') 21 #net.load_weights('/content/drive/MyDrive/Colab Notebooks/chapter7/weights/ssd300_mAP_77.43_v2.pth') 22 /usr/local/lib/python3.7/dist-packages/torch/nn/modules/module.py in __getattr__(self, name) 1129 return modules[name] 1130 raise AttributeError("'{}' object has no attribute '{}'".format( -> 1131 type(self).__name__, name)) 1132 1133 def __setattr__(self, name: str, value: Union[Tensor, 'Module']) -> None: AttributeError: 'DemoModel' object has no attribute 'load_weights'

load_weights属性をDemoModelは持ってないと出てしまいました。

動作環境

Google Colaboratory
Python 3.7.11

気になる質問をクリップする

クリップした質問は、後からいつでもMYページで確認できます。

またクリップした質問に回答があった際、通知やメールを受け取ることができます。

バッドをするには、ログインかつ

こちらの条件を満たす必要があります。

jbpb0

2021/08/30 10:50 編集

> net = DemoModel() を実行しロードを試みたのですが、 > load_weights属性をDemoModelは持ってないと出てしまいました。 net = DemoModel() net.load_state_dict(torch.load('/content/drive/MyDrive/Colab Notebooks/Kuzushiji_Visualisation/kanji.pth')) ではダメでしょうか? 参考 https://tzmi.hatenablog.com/entry/2020/03/05/222813
sugar_s

2021/08/30 15:17

jbpb0様返信ありがとうございます。 net.load_weightsをnet.load_state_dict(torch.load(...に変えたところパラメータのロードが通りました! ありがとうございます。load_weightsに絞って検索をかけていたのでjbpb0様の知見のおかげで助かりました。 ただ、 RuntimeError: Given groups=1, weight of size [16, 1, 7, 7], expected input[1, 3, 300, 300] to have 1 channels, but got 3 channels instead と新たな問題も出てしまったので、RGB画像をグレースケール画像にしてから検出できるよう頑張ります!
guest

回答1

0

自己解決

python

1net = DemoModel() 2net.load_state_dict(torch.load('/content/drive/MyDrive/Colab Notebooks/Kuzushiji_Visualisation/kanji.pth'))

投稿2021/08/31 02:34

sugar_s

総合スコア8

バッドをするには、ログインかつ

こちらの条件を満たす必要があります。

あなたの回答

tips

太字

斜体

打ち消し線

見出し

引用テキストの挿入

コードの挿入

リンクの挿入

リストの挿入

番号リストの挿入

表の挿入

水平線の挿入

プレビュー

15分調べてもわからないことは
teratailで質問しよう!

ただいまの回答率
85.37%

質問をまとめることで
思考を整理して素早く解決

テンプレート機能で
簡単に質問をまとめる

質問する

関連した質問