質問をすることでしか得られない、回答やアドバイスがある。

15分調べてもわからないことは、質問しよう!

新規登録して質問してみよう
ただいま回答率
85.37%
Keras

Kerasは、TheanoやTensorFlow/CNTK対応のラッパーライブラリです。DeepLearningの数学的部分を短いコードでネットワークとして表現することが可能。DeepLearningの最新手法を迅速に試すことができます。

Python

Pythonは、コードの読みやすさが特徴的なプログラミング言語の1つです。 強い型付け、動的型付けに対応しており、後方互換性がないバージョン2系とバージョン3系が使用されています。 商用製品の開発にも無料で使用でき、OSだけでなく仮想環境にも対応。Unicodeによる文字列操作をサポートしているため、日本語処理も標準で可能です。

Q&A

0回答

2119閲覧

ニューラルネットワーク(keras)の分割交差検証(KFold)とoptunaの設定について

aws

総合スコア48

Keras

Kerasは、TheanoやTensorFlow/CNTK対応のラッパーライブラリです。DeepLearningの数学的部分を短いコードでネットワークとして表現することが可能。DeepLearningの最新手法を迅速に試すことができます。

Python

Pythonは、コードの読みやすさが特徴的なプログラミング言語の1つです。 強い型付け、動的型付けに対応しており、後方互換性がないバージョン2系とバージョン3系が使用されています。 商用製品の開発にも無料で使用でき、OSだけでなく仮想環境にも対応。Unicodeによる文字列操作をサポートしているため、日本語処理も標準で可能です。

0グッド

0クリップ

投稿2020/12/30 21:11

ニューラルネットワーク(keras)の分割交差検証(KFold)とoptunaの設定について質問です。

ニューラルネットワークにて3分類(0,1,2)を行うプログラムを構築しております。
最適なDenseやunitsを見つけるのにoptunaを利用しています。

分割交差検証を行いたいと考えているのですがどの様に書くと良いでしょうか?

StratifiedKFoldを用いて交差検証行いたいと考えています。

該当箇所のコード

input_dim = X_train.shape[1] #input_shape input_dim def create_model(n_layer, activation, mid_units, dropout_rate): model = keras.Sequential() for i in range(n_layer): if i == 0: model.add(keras.layers.Dense(units = mid_units, activation = "tanh", input_dim = input_dim)) else: model.add(keras.layers.Dense(units = mid_units, activation = "tanh")) model.add(keras.layers.Dropout(dropout_rate)) model.add(keras.layers.BatchNormalization()) model.add(keras.layers.Dense(3, activation='softmax')) return model def objective(trial): #セッションのクリア keras.backend.clear_session() n_layer = trial.suggest_int('n_layer', 1, 3) # 追加する層を1-3から選ぶ mid_units = int(trial.suggest_discrete_uniform('mid_units', 32, 300, 1)) # ユニット数 dropout_rate = trial.suggest_uniform('dropout_rate', 0, 1) # ドロップアウト率 activation = trial.suggest_categorical('activation', ['tanh']) # 活性化関数 optimizer = trial.suggest_categorical('optimizer', ['adam', 'Adamax', 'Nadam']) # 最適化アルゴリズム model = create_model(n_layer, activation, mid_units, dropout_rate) model.compile(optimizer=optimizer, loss="sparse_categorical_crossentropy", metrics=["accuracy"]) # 雰囲気的にはここらへんいStratifiedKFoldを入れる感じでしょうか? # kf = StratifiedKFold(n_splits=5, shuffle=True, random_state=42) # scores = cross_validate(model, X_train, y_train, cv=kf) history = model.fit(X_train, y_train, epochs = 5, validation_split = 0.1, verbose = 0, batch_size=128) return -np.amax(history.history["val_accuracy"]) study = optuna.create_study() study.optimize(objective, n_trials = 100) best_params = study.best_params print("best_params: ", best_params)

なんとなくですがmodel.fitさせる前にStratifiedKFoldの入れて値を返すのかなーと思うのですがいかがでしょうか?
ランダムフォレストやxgboostなどの機械学習ではこ上記の様な方法で行っていました。
実際やっていみるとSequentialにscoresがないのでエラーになります。

または以下ブログを参考に最初の段階で分割してforでその分割分回すのが一般的になりますか?
https://manareki.com/k_fold

この場合は

kf = StratifiedKFold(n_splits=5, shuffle=True, random_state=42) def objective(trial): for train_index, val_index in kf.split(X_train,Y_train): train_data=X_train[train_index] train_label=Y_train[train_index] val_data=X_train[val_index] val_label=Y_train[val_index] keras.backend.clear_session() n_layer = trial.suggest_int('n_layer', 1, 3) # 追加する層を1-3から選ぶ mid_units = int(trial.suggest_discrete_uniform('mid_units', 32, 300, 1)) # ユニット数 dropout_rate = trial.suggest_uniform('dropout_rate', 0, 1) # ドロップアウト率 activation = trial.suggest_categorical('activation', ['tanh']) # 活性化関数 optimizer = trial.suggest_categorical('optimizer', ['adam', 'Adamax', 'Nadam']) # 最適化アルゴリズム model = create_model(n_layer, activation, mid_units, dropout_rate) model.compile(optimizer=optimizer, loss="sparse_categorical_crossentropy", metrics=["accuracy"]) history = model.fit(train_data, train_label, epochs = 5, validation_split = 0.1, verbose = 0, batch_size=128) return -np.amax(history.history["val_accuracy"])

の様な書き方になりますでしょうか?

よろしくお願いします。

tensorflow 2.4.0
optuna 2.1.0
Keras 2.3.1
windows 10
python 3.7

気になる質問をクリップする

クリップした質問は、後からいつでもMYページで確認できます。

またクリップした質問に回答があった際、通知やメールを受け取ることができます。

バッドをするには、ログインかつ

こちらの条件を満たす必要があります。

guest

あなたの回答

tips

太字

斜体

打ち消し線

見出し

引用テキストの挿入

コードの挿入

リンクの挿入

リストの挿入

番号リストの挿入

表の挿入

水平線の挿入

プレビュー

まだ回答がついていません

会員登録して回答してみよう

アカウントをお持ちの方は

15分調べてもわからないことは
teratailで質問しよう!

ただいまの回答率
85.37%

質問をまとめることで
思考を整理して素早く解決

テンプレート機能で
簡単に質問をまとめる

質問する

関連した質問