質問をすることでしか得られない、回答やアドバイスがある。

15分調べてもわからないことは、質問しよう!

新規登録して質問してみよう
ただいま回答率
87.20%
Python

Pythonは、コードの読みやすさが特徴的なプログラミング言語の1つです。 強い型付け、動的型付けに対応しており、後方互換性がないバージョン2系とバージョン3系が使用されています。 商用製品の開発にも無料で使用でき、OSだけでなく仮想環境にも対応。Unicodeによる文字列操作をサポートしているため、日本語処理も標準で可能です。

受付中

pythonでマスク処理をした動画にオプティカルフローを表示する

kiiiinooookooo
kiiiinooookooo

総合スコア0

Python

Pythonは、コードの読みやすさが特徴的なプログラミング言語の1つです。 強い型付け、動的型付けに対応しており、後方互換性がないバージョン2系とバージョン3系が使用されています。 商用製品の開発にも無料で使用でき、OSだけでなく仮想環境にも対応。Unicodeによる文字列操作をサポートしているため、日本語処理も標準で可能です。

1回答

0評価

0クリップ

1214閲覧

投稿2020/12/24 07:08

任意の動画に対するマスク処理を行ったあとオプティカルフローを表示したいと思っています。
現在このエラーメッセージが出ています。またマスク処理をした動画をオプティカルフローのフレームに入れようとするとエラーがでます。

エラーメッセージ
Traceback (most recent call last):
File "/usr/lib/python3.7/ast.py", line 35, in parse
return compile(source, filename, mode, PyCF_ONLY_AST)
File "/home/pi/mask-satoshi.py", line 33
if ret == True:
^
IndentationError: unexpected indent

対象のプログラム

pyhton

import cv2 import numpy as np # 任意の動画を読み込む cap = cv2.VideoCapture('/home/pi/swim/side.mp4') #動画が読み込めていないとErrorを表示 if cap.isOpened()== False: print("Error!") # Shi-Tomasi法のパラメータ(コーナー:物体の角を特徴点として検出) ft_params = dict(maxCorners=100, # 特徴点の最大数 qualityLevel=0.3, # 特徴点を選択するしきい値で、高いほど特徴点数は厳選されて減る。 minDistance=7, # 特徴点間の最小距離 (特徴点から近い点は、特徴点としない) blockSize=7) # 特徴点の計算に使うブロック(周辺領域)サイズ # Lucas-Kanade法のパラメータ(追跡用) lk_params = dict(winSize=(15, 15), # オプティカルフローの推定の計算に使う周辺領域サイズ maxLevel=2, # ピラミッド数 (デフォルト0:2なら1/4画像まで使用) criteria=(cv2.TERM_CRITERIA_EPS | cv2.TERM_CRITERIA_COUNT, 10, 0.03)) while cap.isOpened(): ret, frame = cap.read() gray1 = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY) ft1 = cv2.goodFeaturesToTrack( gray1, mask=None, **ft_params) mask = np.zeros_like(frame) #動画が読み込めているとき if ret == True: # HSVに変換 hsv = cv2.cvtColor(frame, cv2.COLOR_BGR2HSV) # 泳者のHSV範囲 lower_white = np.array([60,40,80]) upper_white = np.array([200,240,180]) #精度高め[145,170,133] # 泳者以外にマスク mask_white = cv2.inRange(hsv, lower_white, upper_white) res_white = cv2.bitwise_and(frame,frame, mask= mask_white) # 動画終了まで繰り返し while(cap.isOpened()): # 次のフレームを取得し、グレースケールに変換 res_white = cap.read() gray2 = cv2.cvtColor(res_white, cv2.COLOR_BGR2GRAY) # Lucas-Kanade法でフレーム間の特徴点のオプティカルフローwp計算 ft2, status, err = cv2.calcOpticalFlowPyrLK( gray1, gray2, ft1, None, **lk_params) # オプティカルフローを検出した特徴点を取得(1なら検出) good1 = ft1[status == 1] # 1フレーム目 good2 = ft2[status == 1] # 2フレーム目 # 特徴点とオプティカルフローをフレーム・マスクに描画 for i, (pt2, pt1) in enumerate(zip(good2, good1)): x1, y1 = pt1.ravel() # 1フレーム目の特徴点座標 x2, y2 = pt2.ravel() # 2フレーム目の特徴点座標 # 軌跡を描画(過去の軌跡も残すためにmaskに描く) mask = cv2.line(mask, (x2, y2), (x1, y1), [0, 0, 200], 2) # 現フレームにオプティカルフローを描画 frame1 = cv2.circle(res_white, (x2, y2), 5, [0, 0, 200], -1) # フレームとマスクの論理積(合成) img = cv2.add(frame1, mask) cv2.imshow('res',res_white) cv2.imshow('mask', img) gray1 = gray2.copy() # 次のフレームを最初のフレームに設定 ft1 = good2.reshape(-1, 1, 2) # 次の点を最初の点に設定 if cv2.waitKey(1) & 0xFF == ord('q'): break #動画が読み込めない(終了)したとき else: print('end') break cap.release() cv2.destroyAllWindows()

良い質問の評価を上げる

以下のような質問は評価を上げましょう

  • 質問内容が明確
  • 自分も答えを知りたい
  • 質問者以外のユーザにも役立つ

評価が高い質問は、TOPページの「注目」タブのフィードに表示されやすくなります。

気になる質問をクリップする

クリップした質問は、後からいつでもマイページで確認できます。

またクリップした質問に回答があった際、通知やメールを受け取ることができます。

teratailでは下記のような質問を「具体的に困っていることがない質問」、「サイトポリシーに違反する質問」と定義し、推奨していません。

  • プログラミングに関係のない質問
  • やってほしいことだけを記載した丸投げの質問
  • 問題・課題が含まれていない質問
  • 意図的に内容が抹消された質問
  • 過去に投稿した質問と同じ内容の質問
  • 広告と受け取られるような投稿

評価を下げると、トップページの「アクティブ」「注目」タブのフィードに表示されにくくなります。

まだ回答がついていません

会員登録して回答してみよう

15分調べてもわからないことは
teratailで質問しよう!

ただいまの回答率
87.20%

質問をまとめることで
思考を整理して素早く解決

テンプレート機能で
簡単に質問をまとめる

質問する

関連した質問

同じタグがついた質問を見る

Python

Pythonは、コードの読みやすさが特徴的なプログラミング言語の1つです。 強い型付け、動的型付けに対応しており、後方互換性がないバージョン2系とバージョン3系が使用されています。 商用製品の開発にも無料で使用でき、OSだけでなく仮想環境にも対応。Unicodeによる文字列操作をサポートしているため、日本語処理も標準で可能です。