集合地プログラミングを読んで質問があります。
第2章のアイテムベースのレコメンドエンジンを作る場合
critics={'Lisa Rose': {'Lady in the Water': 2.5, 'Snakes on a Plane': 3.5,
'Just My Luck': 3.0, 'Superman Returns': 3.5, 'You, Me and Dupree': 2.5,
'The Night Listener': 3.0},
'Gene Seymour': {'Lady in the Water': 3.0, 'Snakes on a Plane': 3.5,
'Just My Luck': 1.5, 'Superman Returns': 5.0, 'The Night Listener': 3.0,
'You, Me and Dupree': 3.5},
'Michael Phillips': {'Lady in the Water': 2.5, 'Snakes on a Plane': 3.0,
'Superman Returns': 3.5, 'The Night Listener': 4.0},
>>critics['Lisa Rose']['Lady in the Water']
2.5
critics['Toby']['Snakes on a Plane']=4.5
critics['Toby']
{'Snakes on a Plane':4.5,'You, Me and Dupree':1.0}
これがこういう風に数値がでるのもわかっていないです。←--------
この配列についても教えてください。
{'Lisa Rose': {'Lady in the Water': 2.5, 'Snakes on a Plane': 3.5},
'Gene Seymour': {'Lady in the Water': 3.0, 'Snakes on a Plane': 3.5}}
これを次のように変換する。
{'Lady in the Water':{'Lisa Rose':2.5,'Gene Seymour':3.0},
'Snakes on a Plane':{'Lisa Rose':3.5,'Gene Seymour':3.5}} etc..
def transformPrefs(prefs):
result={}
for person in prefs:
for item in prefs[person]:
result.setdefault(item,{})
# itemとpersonを入れ替える
result[item][person]=prefs[person][item] ←------------------------
return result
なぜresult[item][person]=prefs[person][item]をひっくり返しただけで
key値がかわるのでしょうか?
この辞書型がよくわかりません。
また
>>critics['Lisa Rose']['Lady in the Water']
2.5
critics['Toby']['Snakes on a Plane']=4.5
critics['Toby']
{'Snakes on a Plane':4.5,'You, Me and Dupree':1.0}
これがこういう風に数値がでるのもわかっていないです。←--------
この配列についても教えてください。
教えてください。
よろしくお願いします。
またこれと同じことはphpやjavaでもできるのでしょうか。
本のソースコード↓
ftp://ftp.oreilly.co.jp/9784873113647/PCI_sample.pdf
ここにもあります。
A dictionary of movie critics and their ratings of a small
set of movies
critics={'Lisa Rose': {'Lady in the Water': 2.5, 'Snakes on a Plane': 3.5,
'Just My Luck': 3.0, 'Superman Returns': 3.5, 'You, Me and Dupree': 2.5,
'The Night Listener': 3.0},
'Gene Seymour': {'Lady in the Water': 3.0, 'Snakes on a Plane': 3.5,
'Just My Luck': 1.5, 'Superman Returns': 5.0, 'The Night Listener': 3.0,
'You, Me and Dupree': 3.5},
'Michael Phillips': {'Lady in the Water': 2.5, 'Snakes on a Plane': 3.0,
'Superman Returns': 3.5, 'The Night Listener': 4.0},
'Claudia Puig': {'Snakes on a Plane': 3.5, 'Just My Luck': 3.0,
'The Night Listener': 4.5, 'Superman Returns': 4.0,
'You, Me and Dupree': 2.5},
'Mick LaSalle': {'Lady in the Water': 3.0, 'Snakes on a Plane': 4.0,
'Just My Luck': 2.0, 'Superman Returns': 3.0, 'The Night Listener': 3.0,
'You, Me and Dupree': 2.0},
'Jack Matthews': {'Lady in the Water': 3.0, 'Snakes on a Plane': 4.0,
'The Night Listener': 3.0, 'Superman Returns': 5.0, 'You, Me and Dupree': 3.5},
'Toby': {'Snakes on a Plane':4.5,'You, Me and Dupree':1.0,'Superman Returns':4.0}}
from math import sqrt
Returns a distance-based similarity score for person1 and person2
def sim_distance(prefs,person1,person2):
# Get the list of shared_items
si={}
for item in prefs[person1]:
if item in prefs[person2]: si[item]=1
# if they have no ratings in common, return 0
if len(si)==0: return 0
# Add up the squares of all the differences
sum_of_squares=sum([pow(prefs[person1][item]-prefs[person2][item],2)
for item in prefs[person1] if item in prefs[person2]])
return 1/(1+sum_of_squares)
Returns the Pearson correlation coefficient for p1 and p2
def sim_pearson(prefs,p1,p2):
# Get the list of mutually rated items
si={}
for item in prefs[p1]:
if item in prefs[p2]: si[item]=1
# if they are no ratings in common, return 0
if len(si)==0: return 0
# Sum calculations
n=len(si)
# Sums of all the preferences
sum1=sum([prefs[p1][it] for it in si])
sum2=sum([prefs[p2][it] for it in si])
# Sums of the squares
sum1Sq=sum([pow(prefs[p1][it],2) for it in si])
sum2Sq=sum([pow(prefs[p2][it],2) for it in si])
# Sum of the products
pSum=sum([prefs[p1][it]*prefs[p2][it] for it in si])
# Calculate r (Pearson score)
num=pSum-(sum1*sum2/n)
den=sqrt((sum1Sq-pow(sum1,2)/n)*(sum2Sq-pow(sum2,2)/n))
if den==0: return 0
r=num/den
return r
Returns the best matches for person from the prefs dictionary.
Number of results and similarity function are optional params.
def topMatches(prefs,person,n=5,similarity=sim_pearson):
scores=[(similarity(prefs,person,other),other)
for other in prefs if other!=person]
scores.sort()
scores.reverse()
return scores[0:n]
Gets recommendations for a person by using a weighted average
of every other user's rankings
def getRecommendations(prefs,person,similarity=sim_pearson):
totals={}
simSums={}
for other in prefs:
# don't compare me to myself
if other==person: continue
sim=similarity(prefs,person,other)
# ignore scores of zero or lower
if sim<=0: continue
for item in prefs[other]:
# only score movies I haven't seen yet
if item not in prefs[person] or prefs[person][item]==0:
# Similarity * Score
totals.setdefault(item,0)
totals[item]+=prefs[other][item]*sim
# Sum of similarities
simSums.setdefault(item,0)
simSums[item]+=sim
# Create the normalized list
rankings=[(total/simSums[item],item) for item,total in totals.items()]
# Return the sorted list
rankings.sort()
rankings.reverse()
return rankings
def transformPrefs(prefs):
result={}
for person in prefs:
for item in prefs[person]:
result.setdefault(item,{})
# Flip item and person
result[item][person]=prefs[person][item]
return result
def calculateSimilarItems(prefs,n=10):
# Create a dictionary of items showing which other items they
# are most similar to.
result={}
# Invert the preference matrix to be item-centric
itemPrefs=transformPrefs(prefs)
c=0
for item in itemPrefs:
# Status updates for large datasets
c+=1
if c%100==0: print "%d / %d" % (c,len(itemPrefs))
# Find the most similar items to this one
scores=topMatches(itemPrefs,item,n=n,similarity=sim_distance)
result[item]=scores
return result
def getRecommendedItems(prefs,itemMatch,user):
userRatings=prefs[user]
scores={}
totalSim={}
# Loop over items rated by this user
for (item,rating) in userRatings.items( ):
# Loop over items similar to this one
for (similarity,item2) in itemMatch[item]:
# Ignore if this user has already rated this item
if item2 in userRatings: continue
# Weighted sum of rating times similarity
scores.setdefault(item2,0)
scores[item2]+=similarity*rating
# Sum of all the similarities
totalSim.setdefault(item2,0)
totalSim[item2]+=similarity
# Divide each total score by total weighting to get an average
rankings=[(score/totalSim[item],item) for item,score in scores.items( )]
# Return the rankings from highest to lowest
rankings.sort( )
rankings.reverse( )
return rankings
def loadMovieLens(path='/data/movielens'):
# Get movie titles
movies={}
for line in open(path+'/u.item'):
(id,title)=line.split('|')[0:2]
movies[id]=title
# Load data
prefs={}
for line in open(path+'/u.data'):
(user,movieid,rating,ts)=line.split('\t')
prefs.setdefault(user,{})
prefs[user][movies[movieid]]=float(rating)
return prefs
-
気になる質問をクリップする
クリップした質問は、後からいつでもマイページで確認できます。
またクリップした質問に回答があった際、通知やメールを受け取ることができます。
クリップを取り消します
-
良い質問の評価を上げる
以下のような質問は評価を上げましょう
- 質問内容が明確
- 自分も答えを知りたい
- 質問者以外のユーザにも役立つ
評価が高い質問は、TOPページの「注目」タブのフィードに表示されやすくなります。
質問の評価を上げたことを取り消します
-
評価を下げられる数の上限に達しました
評価を下げることができません
- 1日5回まで評価を下げられます
- 1日に1ユーザに対して2回まで評価を下げられます
質問の評価を下げる
teratailでは下記のような質問を「具体的に困っていることがない質問」、「サイトポリシーに違反する質問」と定義し、推奨していません。
- プログラミングに関係のない質問
- やってほしいことだけを記載した丸投げの質問
- 問題・課題が含まれていない質問
- 意図的に内容が抹消された質問
- 広告と受け取られるような投稿
評価が下がると、TOPページの「アクティブ」「注目」タブのフィードに表示されにくくなります。
質問の評価を下げたことを取り消します
この機能は開放されていません
評価を下げる条件を満たしてません
質問の評価を下げる機能の利用条件
この機能を利用するためには、以下の事項を行う必要があります。
- 質問回答など一定の行動
-
メールアドレスの認証
メールアドレスの認証
-
質問評価に関するヘルプページの閲覧
質問評価に関するヘルプページの閲覧
checkベストアンサー
0
なぜresult[item][person]=prefs[person][item]をひっくり返しただけでkey値がかわるのでしょうか?
ひっくり返しただけではないのでは。
ソースにコメントを入れてみました。
def transformPrefs(prefs):
result={}
for person in prefs:
for item in prefs[person]:
result.setdefault(item,{}) # <= この行は if item not in result: result[item] = {}と同義
result[item][person]=prefs[person][item] # <= この行で result[item][person]に値をセット
return result
ご参考になれば。
投稿
-
回答の評価を上げる
以下のような回答は評価を上げましょう
- 正しい回答
- わかりやすい回答
- ためになる回答
評価が高い回答ほどページの上位に表示されます。
-
回答の評価を下げる
下記のような回答は推奨されていません。
- 間違っている回答
- 質問の回答になっていない投稿
- スパムや攻撃的な表現を用いた投稿
評価を下げる際はその理由を明確に伝え、適切な回答に修正してもらいましょう。
15分調べてもわからないことは、teratailで質問しよう!
- ただいまの回答率 89.99%
- 質問をまとめることで、思考を整理して素早く解決
- テンプレート機能で、簡単に質問をまとめられる
2016/03/24 19:27 編集
'Just My Luck': 3.0, 'Superman Returns': 3.5, 'You, Me and Dupree': 2.5,
'The Night Listener': 3.0}
この配列って辞書型ですよね?
この配列がすいません。あんまりよくわかってなくて
2016/03/25 01:31 編集
単純な辞書は {key:value, key:vakue, ...} のように宣言されますが、この場合は各要素の value がさらに辞書になっている、という構造です。
2016/03/25 10:46 編集
この場合
{'Lisa Rose': {'Lady in the Water': 2.5, 'Snakes on a Plane': 3.5},
Lisa Roseがkeyでvalueが{'Lady in the Water': 2.5, 'Snakes on a Plane': 3.5},
'Lady in the Water'がkeyのとき
valueは2.5であっていますか?
2016/03/25 12:33
2016/03/26 01:01
理解出来ました