PointCloudLibrary(PCL)を用いて円柱検出を行なっていました。円柱検出を行うプログラムは以下の通りです(ほとんどPCLチュートリアルのままです)。
#include <pcl/ModelCoefficients.h> #include <pcl/io/pcd_io.h> #include <pcl/point_types.h> #include <pcl/filters/extract_indices.h> #include <pcl/filters/passthrough.h> #include <pcl/features/normal_3d.h> #include <pcl/sample_consensus/method_types.h> #include <pcl/sample_consensus/model_types.h> #include <pcl/segmentation/sac_segmentation.h> typedef pcl::PointXYZ PointT; int main (int argc, char** argv) { std::string filename = "inputfile.pcd"; // All the objects needed pcl::PCDReader reader; pcl::PassThrough<PointT> pass; pcl::NormalEstimation<PointT, pcl::Normal> ne; pcl::SACSegmentationFromNormals<PointT, pcl::Normal> seg; pcl::PCDWriter writer; pcl::ExtractIndices<PointT> extract; pcl::ExtractIndices<pcl::Normal> extract_normals; pcl::search::KdTree<PointT>::Ptr tree (new pcl::search::KdTree<PointT> ()); // Datasets pcl::PointCloud<PointT>::Ptr cloud (new pcl::PointCloud<PointT>); pcl::PointCloud<PointT>::Ptr cloud_filtered (new pcl::PointCloud<PointT>); pcl::PointCloud<pcl::Normal>::Ptr cloud_normals (new pcl::PointCloud<pcl::Normal>); pcl::PointCloud<PointT>::Ptr cloud_filtered2 (new pcl::PointCloud<PointT>); pcl::PointCloud<pcl::Normal>::Ptr cloud_normals2 (new pcl::PointCloud<pcl::Normal>); pcl::ModelCoefficients::Ptr coefficients_plane (new pcl::ModelCoefficients), coefficients_cylinder (new pcl::ModelCoefficients); pcl::PointIndices::Ptr inliers_plane (new pcl::PointIndices), inliers_cylinder (new pcl::PointIndices); // Read in the cloud data reader.read (filename, *cloud); std::cerr << "PointCloud has: " << cloud->points.size () << " data points." << std::endl; // Build a passthrough filter to remove spurious NaNs pass.setInputCloud (cloud); pass.setFilterFieldName ("z"); pass.setFilterLimits (0, 1.5); pass.filter (*cloud_filtered); std::cerr << "PointCloud after filtering has: " << cloud_filtered->points.size () << " data points." << std::endl; // Estimate point normals ne.setSearchMethod (tree); ne.setInputCloud (cloud_filtered); ne.setKSearch (50); ne.compute (*cloud_normals); // Create the segmentation object for the planar model and set all the parameters seg.setOptimizeCoefficients (true); seg.setModelType (pcl::SACMODEL_NORMAL_PLANE); seg.setNormalDistanceWeight (0.1); seg.setMethodType (pcl::SAC_RANSAC); seg.setMaxIterations (100); seg.setDistanceThreshold (0.03); seg.setInputCloud (cloud_filtered); seg.setInputNormals (cloud_normals); // Obtain the plane inliers and coefficients seg.segment (*inliers_plane, *coefficients_plane); std::cerr << "Plane coefficients: " << *coefficients_plane << std::endl; // Extract the planar inliers from the input cloud extract.setInputCloud (cloud_filtered); extract.setIndices (inliers_plane); extract.setNegative (false); // Write the planar inliers to disk pcl::PointCloud<PointT>::Ptr cloud_plane (new pcl::PointCloud<PointT> ()); extract.filter (*cloud_plane); std::cerr << "PointCloud representing the planar component: " << cloud_plane->points.size () << " data points." << std::endl; writer.write (filename, *cloud_plane, false); // Remove the planar inliers, extract the rest extract.setNegative (true); extract.filter (*cloud_filtered2); extract_normals.setNegative (true); extract_normals.setInputCloud (cloud_normals); extract_normals.setIndices (inliers_plane); extract_normals.filter (*cloud_normals2); // Create the segmentation object for cylinder segmentation and set all the parameters seg.setOptimizeCoefficients (true); seg.setModelType (pcl::SACMODEL_CYLINDER); seg.setMethodType (pcl::SAC_RANSAC); seg.setNormalDistanceWeight (0.1); seg.setMaxIterations (10000); seg.setDistanceThreshold (0.05); seg.setRadiusLimits (0, 0.1); seg.setInputCloud (cloud_filtered2); seg.setInputNormals (cloud_normals2); // Obtain the cylinder inliers and coefficients seg.segment (*inliers_cylinder, *coefficients_cylinder); std::cerr << "Cylinder coefficients: " << *coefficients_cylinder << std::endl; // Write the cylinder inliers to disk extract.setInputCloud (cloud_filtered2); extract.setIndices (inliers_cylinder); extract.setNegative (false); pcl::PointCloud<PointT>::Ptr cloud_cylinder (new pcl::PointCloud<PointT> ()); extract.filter (*cloud_cylinder); if (cloud_cylinder->points.empty ()) std::cerr << "Can't find the cylindrical component." << std::endl; else { std::cerr << "PointCloud representing the cylindrical component: " << cloud_cylinder->points.size () << " data points." << std::endl; writer.write (filename, *cloud_cylinder, false); } return (0); }
すると一部の点群ファイルに関しては、以下のようなエラーが出るようになりました。もちろん、入力ファイル内に円柱足り得る点群はあるのですが、検出できません。入力ファイルの点群数は出ているので、入力そのものはできていると思うのですが、なぜか円柱パラメータが取得できません。
どなたか原因がわかる方、いらっしゃいますでしょうか。
PointCloud has: 1042 data points. PointCloud after filtering has: 0 data points. [pcl::NormalEstimation::compute] input_ is empty! [pcl::SampleConsensusModel::getSamples] Can not select 0 unique points out of 0! [pcl::RandomSampleConsensus::computeModel] No samples could be selected! [pcl::SACSegmentationFromNormals::segment] Error segmenting the model! No solution found. Plane coefficients: header: seq: 0 stamp: 0 frame_id: values[] PointCloud representing the planar component: 0 data points. terminate called after throwing an instance of 'pcl::IOException' what(): : [pcl::PCDWriter::writeASCII] Input point cloud has no data! Aborted (core dumped)
初心者的質問で申し訳ございませんが、よろしくお願い致します。
回答1件
あなたの回答
tips
プレビュー
バッドをするには、ログインかつ
こちらの条件を満たす必要があります。