質問をすることでしか得られない、回答やアドバイスがある。

15分調べてもわからないことは、質問しよう!

新規登録して質問してみよう
ただいま回答率
85.35%
ファイル

ファイルとは、文字列に基づいた名前又はパスからアクセスすることができる、任意の情報のブロック又は情報を格納するためのリソースです。

Ubuntu

Ubuntuは、Debian GNU/Linuxを基盤としたフリーのオペレーティングシステムです。

パラメータ

関数やプログラム実行時に与える設定値をパラメータと呼びます。

ファイルI/O

ファイルI/Oは、コンピューターにおけるファイルの入出力です。これは生成/削除やファイルを読み込んだり、出力をファイルに書き込むようなディレクトリやファイルの運用を含みます。

C++

C++はC言語をもとにしてつくられた最もよく使われるマルチパラダイムプログラミング言語の1つです。オブジェクト指向、ジェネリック、命令型など広く対応しており、多目的に使用されています。

Q&A

解決済

1回答

3168閲覧

PCLの円柱検出によるエラーが解決できない

lime00

総合スコア25

ファイル

ファイルとは、文字列に基づいた名前又はパスからアクセスすることができる、任意の情報のブロック又は情報を格納するためのリソースです。

Ubuntu

Ubuntuは、Debian GNU/Linuxを基盤としたフリーのオペレーティングシステムです。

パラメータ

関数やプログラム実行時に与える設定値をパラメータと呼びます。

ファイルI/O

ファイルI/Oは、コンピューターにおけるファイルの入出力です。これは生成/削除やファイルを読み込んだり、出力をファイルに書き込むようなディレクトリやファイルの運用を含みます。

C++

C++はC言語をもとにしてつくられた最もよく使われるマルチパラダイムプログラミング言語の1つです。オブジェクト指向、ジェネリック、命令型など広く対応しており、多目的に使用されています。

0グッド

0クリップ

投稿2020/10/21 07:36

PointCloudLibrary(PCL)を用いて円柱検出を行なっていました。円柱検出を行うプログラムは以下の通りです(ほとんどPCLチュートリアルのままです)。

#include <pcl/ModelCoefficients.h> #include <pcl/io/pcd_io.h> #include <pcl/point_types.h> #include <pcl/filters/extract_indices.h> #include <pcl/filters/passthrough.h> #include <pcl/features/normal_3d.h> #include <pcl/sample_consensus/method_types.h> #include <pcl/sample_consensus/model_types.h> #include <pcl/segmentation/sac_segmentation.h> typedef pcl::PointXYZ PointT; int main (int argc, char** argv) { std::string filename = "inputfile.pcd"; // All the objects needed pcl::PCDReader reader; pcl::PassThrough<PointT> pass; pcl::NormalEstimation<PointT, pcl::Normal> ne; pcl::SACSegmentationFromNormals<PointT, pcl::Normal> seg; pcl::PCDWriter writer; pcl::ExtractIndices<PointT> extract; pcl::ExtractIndices<pcl::Normal> extract_normals; pcl::search::KdTree<PointT>::Ptr tree (new pcl::search::KdTree<PointT> ()); // Datasets pcl::PointCloud<PointT>::Ptr cloud (new pcl::PointCloud<PointT>); pcl::PointCloud<PointT>::Ptr cloud_filtered (new pcl::PointCloud<PointT>); pcl::PointCloud<pcl::Normal>::Ptr cloud_normals (new pcl::PointCloud<pcl::Normal>); pcl::PointCloud<PointT>::Ptr cloud_filtered2 (new pcl::PointCloud<PointT>); pcl::PointCloud<pcl::Normal>::Ptr cloud_normals2 (new pcl::PointCloud<pcl::Normal>); pcl::ModelCoefficients::Ptr coefficients_plane (new pcl::ModelCoefficients), coefficients_cylinder (new pcl::ModelCoefficients); pcl::PointIndices::Ptr inliers_plane (new pcl::PointIndices), inliers_cylinder (new pcl::PointIndices); // Read in the cloud data reader.read (filename, *cloud); std::cerr << "PointCloud has: " << cloud->points.size () << " data points." << std::endl; // Build a passthrough filter to remove spurious NaNs pass.setInputCloud (cloud); pass.setFilterFieldName ("z"); pass.setFilterLimits (0, 1.5); pass.filter (*cloud_filtered); std::cerr << "PointCloud after filtering has: " << cloud_filtered->points.size () << " data points." << std::endl; // Estimate point normals ne.setSearchMethod (tree); ne.setInputCloud (cloud_filtered); ne.setKSearch (50); ne.compute (*cloud_normals); // Create the segmentation object for the planar model and set all the parameters seg.setOptimizeCoefficients (true); seg.setModelType (pcl::SACMODEL_NORMAL_PLANE); seg.setNormalDistanceWeight (0.1); seg.setMethodType (pcl::SAC_RANSAC); seg.setMaxIterations (100); seg.setDistanceThreshold (0.03); seg.setInputCloud (cloud_filtered); seg.setInputNormals (cloud_normals); // Obtain the plane inliers and coefficients seg.segment (*inliers_plane, *coefficients_plane); std::cerr << "Plane coefficients: " << *coefficients_plane << std::endl; // Extract the planar inliers from the input cloud extract.setInputCloud (cloud_filtered); extract.setIndices (inliers_plane); extract.setNegative (false); // Write the planar inliers to disk pcl::PointCloud<PointT>::Ptr cloud_plane (new pcl::PointCloud<PointT> ()); extract.filter (*cloud_plane); std::cerr << "PointCloud representing the planar component: " << cloud_plane->points.size () << " data points." << std::endl; writer.write (filename, *cloud_plane, false); // Remove the planar inliers, extract the rest extract.setNegative (true); extract.filter (*cloud_filtered2); extract_normals.setNegative (true); extract_normals.setInputCloud (cloud_normals); extract_normals.setIndices (inliers_plane); extract_normals.filter (*cloud_normals2); // Create the segmentation object for cylinder segmentation and set all the parameters seg.setOptimizeCoefficients (true); seg.setModelType (pcl::SACMODEL_CYLINDER); seg.setMethodType (pcl::SAC_RANSAC); seg.setNormalDistanceWeight (0.1); seg.setMaxIterations (10000); seg.setDistanceThreshold (0.05); seg.setRadiusLimits (0, 0.1); seg.setInputCloud (cloud_filtered2); seg.setInputNormals (cloud_normals2); // Obtain the cylinder inliers and coefficients seg.segment (*inliers_cylinder, *coefficients_cylinder); std::cerr << "Cylinder coefficients: " << *coefficients_cylinder << std::endl; // Write the cylinder inliers to disk extract.setInputCloud (cloud_filtered2); extract.setIndices (inliers_cylinder); extract.setNegative (false); pcl::PointCloud<PointT>::Ptr cloud_cylinder (new pcl::PointCloud<PointT> ()); extract.filter (*cloud_cylinder); if (cloud_cylinder->points.empty ()) std::cerr << "Can't find the cylindrical component." << std::endl; else { std::cerr << "PointCloud representing the cylindrical component: " << cloud_cylinder->points.size () << " data points." << std::endl; writer.write (filename, *cloud_cylinder, false); } return (0); }

すると一部の点群ファイルに関しては、以下のようなエラーが出るようになりました。もちろん、入力ファイル内に円柱足り得る点群はあるのですが、検出できません。入力ファイルの点群数は出ているので、入力そのものはできていると思うのですが、なぜか円柱パラメータが取得できません。
どなたか原因がわかる方、いらっしゃいますでしょうか。

PointCloud has: 1042 data points. PointCloud after filtering has: 0 data points. [pcl::NormalEstimation::compute] input_ is empty! [pcl::SampleConsensusModel::getSamples] Can not select 0 unique points out of 0! [pcl::RandomSampleConsensus::computeModel] No samples could be selected! [pcl::SACSegmentationFromNormals::segment] Error segmenting the model! No solution found. Plane coefficients: header: seq: 0 stamp: 0 frame_id: values[] PointCloud representing the planar component: 0 data points. terminate called after throwing an instance of 'pcl::IOException' what(): : [pcl::PCDWriter::writeASCII] Input point cloud has no data! Aborted (core dumped)

初心者的質問で申し訳ございませんが、よろしくお願い致します。

気になる質問をクリップする

クリップした質問は、後からいつでもMYページで確認できます。

またクリップした質問に回答があった際、通知やメールを受け取ることができます。

バッドをするには、ログインかつ

こちらの条件を満たす必要があります。

guest

回答1

0

自己解決

コードをもう一度よく見直し、コード内の閾値を修正してみたところ、解決できました。
ありがとうございました。

投稿2020/10/28 05:33

lime00

総合スコア25

バッドをするには、ログインかつ

こちらの条件を満たす必要があります。

あなたの回答

tips

太字

斜体

打ち消し線

見出し

引用テキストの挿入

コードの挿入

リンクの挿入

リストの挿入

番号リストの挿入

表の挿入

水平線の挿入

プレビュー

15分調べてもわからないことは
teratailで質問しよう!

ただいまの回答率
85.35%

質問をまとめることで
思考を整理して素早く解決

テンプレート機能で
簡単に質問をまとめる

質問する

関連した質問