前提・実現したいこと
opencvとAzureのFaceAPIを使いカメラから顔を認識し感情を推定するプログラムを作成したいのですが、実行時、下記のようなエラーが出てしまいます。
ほかの似たプログラムでも同じエラーメッセージが出てしまうのですが調べてみても解決方法がわからず、苦戦しています。なにか解決方法があれば教えていただきたいです。
発生している問題・エラーメッセージ
--------------------------------------------------------------------------- error Traceback (most recent call last) <ipython-input-3-6333100fad90> in <module> 30 while True: 31 r, img = cap.read() ---> 32 img_gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)#グレースケールに変換 33 faces=cascade.detectMultiScale(img_gray, scaleFactor=1.1, minNeighbors=1, minSize=(100, 100))#顔判定 minSizeで顔判定する際の最小の四角の大きさを指定できる。(小さい値を指定し過ぎると顔っぽい小さなシミのような部分も判定されてしまう。) 34 error: C:\ci\opencv_1512688052760\work\modules\imgproc\src\color.cpp:11048: error: (-215) scn == 3 || scn == 4 in function cv::cvtColor
該当のソースコード
import cognitive_face as CF import json ##################### import requests import time import numpy as np import cv2 from datetime import datetime import matplotlib.pyplot as plt import pandas as pd cap = cv2.VideoCapture(0) data_name = ["anger","contempt","disgust","fear","happiness",'sadness','surprise']#保存データの系列 emotion_data =[0,0,0,0,0,0,0]#初期値 count = 0#撮影回数を示すカウンタ ##顔認識の設定 cascade_path = 'E:\opencvcascade/haarcascade_frontalface_alt.xml'# 顔判定で使うxmlファイルを指定する。(opencvのpathを指定) cascade = cv2.CascadeClassifier(cascade_path) ##Faceの設定 subscription_key = 'c5a1c742742b4af780a74a29b0297dd1'#ここに取得したキー1を入力 assert subscription_key face_api_url = 'https://shota0720.cognitiveservices.azure.com/face/v1.0/detect'#ここに取得したエンドポイントのURLを入力 ##実行 while True: r, img = cap.read() img_gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)#グレースケールに変換 faces=cascade.detectMultiScale(img_gray, scaleFactor=1.1, minNeighbors=1, minSize=(100, 100))#顔判定 minSizeで顔判定する際の最小の四角の大きさを指定できる。(小さい値を指定し過ぎると顔っぽい小さなシミのような部分も判定されてしまう。) if len(faces) > 0: #顔を検出した場合 for face in faces: now = datetime.now()#撮影時間 filename = str(now)+'.jpg'#保存するfilename #cv2.imwrite(filename, img)#画像の書き出し image_data = open(filename, "rb").read()#処理をする画像を選択 headers = {'Ocp-Apim-Subscription-Key': subscription_key, 'Content-Type': 'application/octet-stream'} params = { 'returnFaceId': 'true', 'returnFaceLandmarks': 'false', 'returnFaceAttributes': 'age,gender,headPose,smile,facialHair,glasses,emotion,hair,makeup,occlusion,accessories,blur,exposure,noise', } response = requests.post(face_api_url, headers=headers, params=params, data=image_data)#FaceAPIで解析 response.raise_for_status() analysis = response.json()#json出力 #faceのjsonから抽出する項目をピック result = [analysis[0]['faceAttributes']['emotion']['anger'],analysis[0]['faceAttributes']['emotion']['contempt'], analysis[0]['faceAttributes']['emotion']['disgust'],analysis[0]['faceAttributes']['emotion']['fear'], analysis[0]['faceAttributes']['emotion']['happiness'],analysis[0]['faceAttributes']['emotion']['sadness'], analysis[0]['faceAttributes']['emotion']['surprise']] emotion_data = np.array(result) + np.array(emotion_data) df = pd.DataFrame({now:emotion_data}, index=data_name)#取得データをDataFrame1に変換しdfとして定義 if count == 0:#初期 print(df) else: df = pd.concat([df_past,df],axis = 1, sort = False)#dfを更新 print(df) #plt.plot(df.T)#dfの行列を反転 #plt.legend(data_name)#凡例を表示 #plt.draw()#グラフ描画 #plt.pause(4)#ウェイト時間(=Azure更新時間) #plt.cla()#グラフを閉じる ############################## #KEY = 'c5a1c742742b41f780a74a29b0297dd1' #ENDPOINT = 'https://shota0720.cognitiveservices.azure.com/face/v1.0' #CF.Key.set(KEY) #CF.BaseUrl.set(ENDPOINT) img = filename faces = CF.face.detect(img, attributes='emotion') f=json.dumps(faces) j=json.loads(f) print(len(j)) for i in range(0,len(j)): print(j[i]['faceAttributes']['emotion'])
試したこと
ここに問題に対して試したことを記載してください。
補足情報(FW/ツールのバージョンなど)
引用元
リンク内容
リンク内容
pyplotが必要ないと思ったので二個目のサイトの”まずはmacで試してみる”というコードと一個目のサイトのコードをくっつけてプログラムを完成させたいと思い試行錯誤していました。
開発環境
windows10
anaconda
あなたの回答
tips
プレビュー