🎄teratailクリスマスプレゼントキャンペーン2024🎄』開催中!

\teratail特別グッズやAmazonギフトカード最大2,000円分が当たる!/

詳細はこちら
Python 3.x

Python 3はPythonプログラミング言語の最新バージョンであり、2008年12月3日にリリースされました。

Q&A

解決済

1回答

1025閲覧

ゼロから作るDeep Learningの7章ソースコード(simple_convnet.py)についての質問です.

Kazu2020

総合スコア5

Python 3.x

Python 3はPythonプログラミング言語の最新バージョンであり、2008年12月3日にリリースされました。

0グッド

0クリップ

投稿2020/01/04 01:33

ゼロから作るDeep Learningの7章ソースコード(simple_convnet.py)内の重みの初期化の部分で,
以下の記述があるのですが,weight_init_std * \の部分の,「 * \ 」の部分が何をしているのが
理解できません.調べた限りでは演算子ではないようなのですが・・・

self.params['W1'] = weight_init_std *
np.random.randn(filter_num, input_dim[0], filter_size, filter_size)

もしお分かりの方がおられましたら,ご教授頂くことは可能でしょうか?
恐れ入りますが,どうぞよろしくお願いいたします.

----------simple_convnet.pyのソースコードの全文は以下の通りです.---------------

coding: utf-8

import sys, os
sys.path.append(os.pardir) # 親ディレクトリのファイルをインポートするための設定
import pickle
import numpy as np
from collections import OrderedDict
from common.layers import *
from common.gradient import numerical_gradient

class SimpleConvNet:
"""単純なConvNet

conv - relu - pool - affine - relu - affine - softmax Parameters ---------- input_size : 入力サイズ(MNISTの場合は784) hidden_size_list : 隠れ層のニューロンの数のリスト(e.g. [100, 100, 100]) output_size : 出力サイズ(MNISTの場合は10) activation : 'relu' or 'sigmoid' weight_init_std : 重みの標準偏差を指定(e.g. 0.01) 'relu'または'he'を指定した場合は「Heの初期値」を設定 'sigmoid'または'xavier'を指定した場合は「Xavierの初期値」を設定 """ def __init__(self, input_dim=(1, 28, 28), conv_param={'filter_num':30, 'filter_size':5, 'pad':0, 'stride':1}, hidden_size=100, output_size=10, weight_init_std=0.01): filter_num = conv_param['filter_num'] filter_size = conv_param['filter_size'] filter_pad = conv_param['pad'] filter_stride = conv_param['stride'] input_size = input_dim[1] conv_output_size = (input_size - filter_size + 2*filter_pad) / filter_stride + 1 pool_output_size = int(filter_num * (conv_output_size/2) * (conv_output_size/2)) # 重みの初期化 self.params = {} self.params['W1'] = weight_init_std * \ np.random.randn(filter_num, input_dim[0], filter_size, filter_size) self.params['b1'] = np.zeros(filter_num) self.params['W2'] = weight_init_std * \ np.random.randn(pool_output_size, hidden_size) self.params['b2'] = np.zeros(hidden_size) self.params['W3'] = weight_init_std * \ np.random.randn(hidden_size, output_size) self.params['b3'] = np.zeros(output_size) # レイヤの生成 self.layers = OrderedDict() self.layers['Conv1'] = Convolution(self.params['W1'], self.params['b1'], conv_param['stride'], conv_param['pad']) self.layers['Relu1'] = Relu() self.layers['Pool1'] = Pooling(pool_h=2, pool_w=2, stride=2) self.layers['Affine1'] = Affine(self.params['W2'], self.params['b2']) self.layers['Relu2'] = Relu() self.layers['Affine2'] = Affine(self.params['W3'], self.params['b3']) self.last_layer = SoftmaxWithLoss() def predict(self, x): for layer in self.layers.values(): x = layer.forward(x) return x def loss(self, x, t): """損失関数を求める 引数のxは入力データ、tは教師ラベル """ y = self.predict(x) return self.last_layer.forward(y, t) def accuracy(self, x, t, batch_size=100): if t.ndim != 1 : t = np.argmax(t, axis=1) acc = 0.0 for i in range(int(x.shape[0] / batch_size)): tx = x[i*batch_size:(i+1)*batch_size] tt = t[i*batch_size:(i+1)*batch_size] y = self.predict(tx) y = np.argmax(y, axis=1) acc += np.sum(y == tt) return acc / x.shape[0] def numerical_gradient(self, x, t): """勾配を求める(数値微分) Parameters ---------- x : 入力データ t : 教師ラベル Returns ------- 各層の勾配を持ったディクショナリ変数 grads['W1']、grads['W2']、...は各層の重み grads['b1']、grads['b2']、...は各層のバイアス """ loss_w = lambda w: self.loss(x, t) grads = {} for idx in (1, 2, 3): grads['W' + str(idx)] = numerical_gradient(loss_w, self.params['W' + str(idx)]) grads['b' + str(idx)] = numerical_gradient(loss_w, self.params['b' + str(idx)]) return grads def gradient(self, x, t): """勾配を求める(誤差逆伝搬法) Parameters ---------- x : 入力データ t : 教師ラベル Returns ------- 各層の勾配を持ったディクショナリ変数 grads['W1']、grads['W2']、...は各層の重み grads['b1']、grads['b2']、...は各層のバイアス """ # forward self.loss(x, t) # backward dout = 1 dout = self.last_layer.backward(dout) layers = list(self.layers.values()) layers.reverse() for layer in layers: dout = layer.backward(dout) # 設定 grads = {} grads['W1'], grads['b1'] = self.layers['Conv1'].dW, self.layers['Conv1'].db grads['W2'], grads['b2'] = self.layers['Affine1'].dW, self.layers['Affine1'].db grads['W3'], grads['b3'] = self.layers['Affine2'].dW, self.layers['Affine2'].db return grads def save_params(self, file_name="params.pkl"): params = {} for key, val in self.params.items(): params[key] = val with open(file_name, 'wb') as f: pickle.dump(params, f) def load_params(self, file_name="params.pkl"): with open(file_name, 'rb') as f: params = pickle.load(f) for key, val in params.items(): self.params[key] = val for i, key in enumerate(['Conv1', 'Affine1', 'Affine2']): self.layers[key].W = self.params['W' + str(i+1)] self.layers[key].b = self.params['b' + str(i+1)]

気になる質問をクリップする

クリップした質問は、後からいつでもMYページで確認できます。

またクリップした質問に回答があった際、通知やメールを受け取ることができます。

バッドをするには、ログインかつ

こちらの条件を満たす必要があります。

y_waiwai

2020/01/04 01:40

このままではコードが読めないので、質問を編集し、<code>ボタンを押し、出てくる’’’の枠の中にコードを貼り付けてください
Kazu2020

2020/01/04 01:41

わかりました.やってみます.
guest

回答1

0

ベストアンサー

行末にバックスラッシュ(¥)がある場合は、次の行に連結することになってます
ということで、

self.params['W1'] = weight_init_std * \

np.random.randn(filter_num, input_dim[0], filter_size, filter_size)

ってのは、

self.params['W1'] = weight_init_std * np.random.randn(filter_num, input_dim[0], filter_size, filter_size)

ということですね

投稿2020/01/04 01:43

y_waiwai

総合スコア88040

バッドをするには、ログインかつ

こちらの条件を満たす必要があります。

Kazu2020

2020/01/04 01:45

そうなんですね.なるほどです! ご教授ありがとうございました!!
guest

あなたの回答

tips

太字

斜体

打ち消し線

見出し

引用テキストの挿入

コードの挿入

リンクの挿入

リストの挿入

番号リストの挿入

表の挿入

水平線の挿入

プレビュー

15分調べてもわからないことは
teratailで質問しよう!

ただいまの回答率
85.36%

質問をまとめることで
思考を整理して素早く解決

テンプレート機能で
簡単に質問をまとめる

質問する

関連した質問