質問をすることでしか得られない、回答やアドバイスがある。

15分調べてもわからないことは、質問しよう!

新規登録して質問してみよう
ただいま回答率
86.12%
OpenCV

OpenCV(オープンソースコンピュータービジョン)は、1999年にインテルが開発・公開したオープンソースのコンピュータビジョン向けのクロスプラットフォームライブラリです。

Python

Pythonは、コードの読みやすさが特徴的なプログラミング言語の1つです。 強い型付け、動的型付けに対応しており、後方互換性がないバージョン2系とバージョン3系が使用されています。 商用製品の開発にも無料で使用でき、OSだけでなく仮想環境にも対応。Unicodeによる文字列操作をサポートしているため、日本語処理も標準で可能です。

解決済

pythonとRealSenseを用いて動いている物体を検知する

gnewon
gnewon

総合スコア5

OpenCV

OpenCV(オープンソースコンピュータービジョン)は、1999年にインテルが開発・公開したオープンソースのコンピュータビジョン向けのクロスプラットフォームライブラリです。

Python

Pythonは、コードの読みやすさが特徴的なプログラミング言語の1つです。 強い型付け、動的型付けに対応しており、後方互換性がないバージョン2系とバージョン3系が使用されています。 商用製品の開発にも無料で使用でき、OSだけでなく仮想環境にも対応。Unicodeによる文字列操作をサポートしているため、日本語処理も標準で可能です。

1回答

0リアクション

0クリップ

7764閲覧

投稿2019/10/29 11:02

実現したいこと

Intel RealSense D435iとpythonを用いてRealSenseから得られる深度情報をもとに動いている物体を検知するプログラムを作成しようとしています.

方針

方針としては,現在のフレームと1つ前のフレームの各ピクセルの深度の差を求めて,閾値を超えたら通知するといったものを考えています.

問題

現在のフレームの深度情報を得ることはできるのですが,1つ前のフレームの深度情報を得る方法が分かりません.

該当のソースコード

ソースコードはこちらを参考にしています.
リンク内容

python

# -*- coding: utf-8 -*- import pyrealsense2 as rs import numpy as np import cv2 # ストリーム(Depth/Color)の設定 config = rs.config() config.enable_stream(rs.stream.color, 640, 480, rs.format.bgr8, 60) config.enable_stream(rs.stream.depth, 640, 480, rs.format.z16, 60) # ストリーミング開始 pipeline = rs.pipeline() profile = pipeline.start(config) # 距離[m] = depth * depth_scale depth_sensor = profile.get_device().first_depth_sensor() depth_scale = depth_sensor.get_depth_scale() clipping_distance_in_meters = 10.0 # meter clipping_distance = clipping_distance_in_meters / depth_scale # Alignオブジェクト生成 align_to = rs.stream.color align = rs.align(align_to) np.set_printoptions(threshold=np.inf, precision=3) try: while True: # フレーム待ち(Color & Depth) frames = pipeline.wait_for_frames() aligned_frames = align.process(frames) color_frame = aligned_frames.get_color_frame() depth_frame = aligned_frames.get_depth_frame() if not depth_frame or not color_frame: continue color_image = np.asanyarray(color_frame.get_data()) depth_image = np.asanyarray(depth_frame.get_data()) # Depth画像前処理(1m以内を画像化) grey_color = 153 depth_image_3d = np.dstack((depth_image,depth_image,depth_image)) bg_removed = np.where((depth_image_3d > clipping_distance) | (depth_image_3d <= 0), grey_color, color_image) # 深度情報保存 np.save("save.npy", depth_image) # レンダリング depth_colormap = cv2.applyColorMap(cv2.convertScaleAbs(depth_image, alpha=0.03), cv2.COLORMAP_JET) images = np.hstack((bg_removed, depth_colormap)) cv2.namedWindow('Align Example', cv2.WINDOW_AUTOSIZE) cv2.imshow('RealSense', images) if cv2.waitKey(1) & 0xff == 27: break finally: # ストリーミング停止 pipeline.stop() cv2.destroyAllWindows()

補足情報

windows
Python 3.6.8
opencv-contrib-python 4.1.1.26
pyrealsense2 2.29.0.1124

以下のような質問にはリアクションをつけましょう

  • 質問内容が明確
  • 自分も答えを知りたい
  • 質問者以外のユーザにも役立つ

リアクションが多い質問は、TOPページの「注目」タブのフィードに表示されやすくなります。

気になる質問をクリップする

クリップした質問は、後からいつでもマイページで確認できます。

またクリップした質問に回答があった際、通知やメールを受け取ることができます。

下記のような質問は推奨されていません。

  • 間違っている
  • 質問になっていない投稿
  • スパムや攻撃的な表現を用いた投稿

適切な質問に修正を依頼しましょう。

まだ回答がついていません

会員登録して回答してみよう

アカウントをお持ちの方は

15分調べてもわからないことは
teratailで質問しよう!

ただいまの回答率
86.12%

質問をまとめることで
思考を整理して素早く解決

テンプレート機能で
簡単に質問をまとめる

質問する

関連した質問

同じタグがついた質問を見る

OpenCV

OpenCV(オープンソースコンピュータービジョン)は、1999年にインテルが開発・公開したオープンソースのコンピュータビジョン向けのクロスプラットフォームライブラリです。

Python

Pythonは、コードの読みやすさが特徴的なプログラミング言語の1つです。 強い型付け、動的型付けに対応しており、後方互換性がないバージョン2系とバージョン3系が使用されています。 商用製品の開発にも無料で使用でき、OSだけでなく仮想環境にも対応。Unicodeによる文字列操作をサポートしているため、日本語処理も標準で可能です。