質問をすることでしか得られない、回答やアドバイスがある。

15分調べてもわからないことは、質問しよう!

新規登録して質問してみよう
ただいま回答率
87.20%
Jupyter

Jupyter (旧IPython notebook)は、Notebook形式でドキュメント作成し、プログラムの記述・実行、その実行結果を記録するツールです。メモの作成や保存、共有、確認などもブラウザ上で行うことができます。

Keras

Kerasは、TheanoやTensorFlow/CNTK対応のラッパーライブラリです。DeepLearningの数学的部分を短いコードでネットワークとして表現することが可能。DeepLearningの最新手法を迅速に試すことができます。

Matplotlib

MatplotlibはPythonのおよび、NumPy用のグラフ描画ライブラリです。多くの場合、IPythonと連携して使われます。

Python 3.x

Python 3はPythonプログラミング言語の最新バージョンであり、2008年12月3日にリリースされました。

解決済

CNNによるCIFAR-10の分類問題を判別したい

akanenko0306
akanenko0306

総合スコア0

Jupyter

Jupyter (旧IPython notebook)は、Notebook形式でドキュメント作成し、プログラムの記述・実行、その実行結果を記録するツールです。メモの作成や保存、共有、確認などもブラウザ上で行うことができます。

Keras

Kerasは、TheanoやTensorFlow/CNTK対応のラッパーライブラリです。DeepLearningの数学的部分を短いコードでネットワークとして表現することが可能。DeepLearningの最新手法を迅速に試すことができます。

Matplotlib

MatplotlibはPythonのおよび、NumPy用のグラフ描画ライブラリです。多くの場合、IPythonと連携して使われます。

Python 3.x

Python 3はPythonプログラミング言語の最新バージョンであり、2008年12月3日にリリースされました。

1回答

0評価

0クリップ

1175閲覧

投稿2019/04/19 07:38

前提・実現したいこと

CNNを用いて、CIFAR-10のデータセットを分類したいです。
jupyternotebookを使用しています。

発生している問題・エラーメッセージ

ValueError: Error when checking target: expected activation_40 to have 2 dimensions, but got array with shape (50000, 10, 10)

該当のソースコード

Python

import matplotlib.pyplot as plt import keras from keras.datasets import cifar10 from keras.models import Sequential from keras.layers import Dense, Dropout, Activation, Flatten from keras.layers import Conv2D, MaxPooling2D num_classes = 10 im_rows = 32 im_cols = 32 in_shape = (im_rows, im_cols, 3) (X_train, y_train), (X_test, y_test) = cifar10.load_data() X_train = X_train.astype('float32') / 255 X_test = X_test.astype('float32') / 255 y_train = keras.utils.to_categorical(y_train, num_classes) y_test = keras.utils.to_categorical(y_train, num_classes) model = Sequential() model.add(Conv2D(32, (3, 3), padding='same', input_shape=in_shape)) model.add(Activation('relu')) model.add(Conv2D(32, (3, 3))) model.add(Activation('relu')) model.add(MaxPooling2D(pool_size=(2, 2))) model.add(Dropout(0.25)) model.add(Conv2D(64, (3, 3), padding='same')) model.add(Activation('relu')) model.add(Conv2D(64, (3, 3))) model.add(Activation('relu')) model.add(MaxPooling2D(pool_size=(2, 2))) model.add(Dropout(0.25)) model.add(Flatten()) model.add(Dense(512)) model.add(Activation('relu')) model.add(Dropout(0.5)) model.add(Dense(num_classes)) model.add(Activation('softmax')) model.compile( loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy']) hist = model.fit(X_train, y_train, batch_size=32, epochs=50, verbose=1, validation_data=(X_test, y_test)) score = model.evaluate(X_test, y_test, verbose=1) print('正解率=', score[1], 'loss=', score[0]) plt.plot(hist.history['acc']) plt.plot(hist.history['val_acc']) plt.title('Accuracy') plt.legend(['train', 'test'], loc='upper left') plt.show() plt.plot(hist.history['loss']) plt.plot(hist.history['val_loss']) plt.title('Loss') plt.legend(['train', 'test'], loc='upper left'), plt.show()

試したこと

コードの打ち間違いを確認しましたが、なさそうでした。

補足情報(FW/ツールのバージョンなど)

本を使用して勉強しています。今回は本に記載されているコードをそのまま打ちました。
Python初心者ですので基本的な部分でつまづいている可能性がありますが、わかる方いらっしゃいますでしょうか。

良い質問の評価を上げる

以下のような質問は評価を上げましょう

  • 質問内容が明確
  • 自分も答えを知りたい
  • 質問者以外のユーザにも役立つ

評価が高い質問は、TOPページの「注目」タブのフィードに表示されやすくなります。

気になる質問をクリップする

クリップした質問は、後からいつでもマイページで確認できます。

またクリップした質問に回答があった際、通知やメールを受け取ることができます。

teratailでは下記のような質問を「具体的に困っていることがない質問」、「サイトポリシーに違反する質問」と定義し、推奨していません。

  • プログラミングに関係のない質問
  • やってほしいことだけを記載した丸投げの質問
  • 問題・課題が含まれていない質問
  • 意図的に内容が抹消された質問
  • 過去に投稿した質問と同じ内容の質問
  • 広告と受け取られるような投稿

評価を下げると、トップページの「アクティブ」「注目」タブのフィードに表示されにくくなります。

まだ回答がついていません

会員登録して回答してみよう

15分調べてもわからないことは
teratailで質問しよう!

ただいまの回答率
87.20%

質問をまとめることで
思考を整理して素早く解決

テンプレート機能で
簡単に質問をまとめる

質問する

関連した質問

同じタグがついた質問を見る

Jupyter

Jupyter (旧IPython notebook)は、Notebook形式でドキュメント作成し、プログラムの記述・実行、その実行結果を記録するツールです。メモの作成や保存、共有、確認などもブラウザ上で行うことができます。

Keras

Kerasは、TheanoやTensorFlow/CNTK対応のラッパーライブラリです。DeepLearningの数学的部分を短いコードでネットワークとして表現することが可能。DeepLearningの最新手法を迅速に試すことができます。

Matplotlib

MatplotlibはPythonのおよび、NumPy用のグラフ描画ライブラリです。多くの場合、IPythonと連携して使われます。

Python 3.x

Python 3はPythonプログラミング言語の最新バージョンであり、2008年12月3日にリリースされました。