質問をすることでしか得られない、回答やアドバイスがある。

15分調べてもわからないことは、質問しよう!

ただいまの
回答率

90.52%

  • Python

    7930questions

    Pythonは、コードの読みやすさが特徴的なプログラミング言語の1つです。 強い型付け、動的型付けに対応しており、後方互換性がないバージョン2系とバージョン3系が使用されています。 商用製品の開発にも無料で使用でき、OSだけでなく仮想環境にも対応。Unicodeによる文字列操作をサポートしているため、日本語処理も標準で可能です。

  • pandas

    578questions

    Pandasは、PythonでRにおけるデータフレームに似た型を持たせることができるライブラリです。 行列計算の負担が大幅に軽減されるため、Rで行っていた集計作業をPythonでも比較的簡単に行えます。 データ構造を変更したりデータ分析したりするときにも便利です。

pandasで欠損値を埋める方法

解決済

回答 1

投稿

  • 評価
  • クリップ 1
  • VIEW 630

pandasに関しての質問です。
以下のようなA・B二つのデータフレームがあるとき
Aの欠損部分のみをBの値にした
Cのようなデータフレームを生み出したいです。

A・Bのcolumnやindexの値は全て同じです。

データフレームA

列1 列2 列3  列4 
nan 2 3 4
1 nan 3 4
1 2 nan 4
1 nan 3 nan

データフレームB

列1 列2 列3  列4 
5 6 7 8
9 10 11 12
13 14 15 16
17 18 19 20

データフレームC

列1 列2 列3  列4 
5 2 3 4
1 10 3 4
1 2 15 4
1 18 3 20

Aのセル一つ一つを調べてnanならBの値を入れる、という方法でもちろんいいのですが
もうちょっとスマートなやり方はないのかな、と思って質問させていただきました。
(fillnaではここまで複雑なことはできなさそう...?)

  • 気になる質問をクリップする

    クリップした質問は、後からいつでもマイページで確認できます。

    またクリップした質問に回答があった際、通知やメールを受け取ることができます。

    クリップを取り消します

  • 良い質問の評価を上げる

    以下のような質問は評価を上げましょう

    • 質問内容が明確
    • 自分も答えを知りたい
    • 質問者以外のユーザにも役立つ

    評価が高い質問は、TOPページの「注目」タブのフィードに表示されやすくなります。

    質問の評価を上げたことを取り消します

  • 評価を下げられる数の上限に達しました

    評価を下げることができません

    • 1日5回まで評価を下げられます
    • 1日に1ユーザに対して2回まで評価を下げられます

    質問の評価を下げる

    teratailでは下記のような質問を「具体的に困っていることがない質問」、「サイトポリシーに違反する質問」と定義し、推奨していません。

    • プログラミングに関係のない質問
    • やってほしいことだけを記載した丸投げの質問
    • 問題・課題が含まれていない質問
    • 意図的に内容が抹消された質問
    • 広告と受け取られるような投稿

    評価が下がると、TOPページの「アクティブ」「注目」タブのフィードに表示されにくくなります。

    質問の評価を下げたことを取り消します

    この機能は開放されていません

    評価を下げる条件を満たしてません

    評価を下げる理由を選択してください

    詳細な説明はこちら

    上記に当てはまらず、質問内容が明確になっていない質問には「情報の追加・修正依頼」機能からコメントをしてください。

    質問の評価を下げる機能の利用条件

    この機能を利用するためには、以下の事項を行う必要があります。

回答 1

checkベストアンサー

+2

fillnaで行けますよ。

テストしたコードを書きますね。

a.csv

'列1','列2','列3','列4'
'','2','3','4'
'1','','3','4'
'1','2','','4'
'1','','3',''

b.csv

'列1','列2','列3','列4'
'5','6','7','8'
'9','10','11','12'
'13','14','15','16'
'17','18','19','20'
import pandas

a_sheet = pandas.read_csv('a.csv',header=0,quotechar="'")
b_sheet = pandas.read_csv('b.csv',header=0,quotechar="'")

print(a_sheet)
print('========================')
print(b_sheet)
print('========================')

c_sheet = a_sheet.fillna(b_sheet)

print(c_sheet)

投稿

  • 回答の評価を上げる

    以下のような回答は評価を上げましょう

    • 正しい回答
    • わかりやすい回答
    • ためになる回答

    評価が高い回答ほどページの上位に表示されます。

  • 回答の評価を下げる

    下記のような回答は推奨されていません。

    • 間違っている回答
    • 質問の回答になっていない投稿
    • スパムや攻撃的な表現を用いた投稿

    評価を下げる際はその理由を明確に伝え、適切な回答に修正してもらいましょう。

15分調べてもわからないことは、teratailで質問しよう!

  • ただいまの回答率 90.52%
  • 質問をまとめることで、思考を整理して素早く解決
  • テンプレート機能で、簡単に質問をまとめられる

関連した質問

同じタグがついた質問を見る

  • Python

    7930questions

    Pythonは、コードの読みやすさが特徴的なプログラミング言語の1つです。 強い型付け、動的型付けに対応しており、後方互換性がないバージョン2系とバージョン3系が使用されています。 商用製品の開発にも無料で使用でき、OSだけでなく仮想環境にも対応。Unicodeによる文字列操作をサポートしているため、日本語処理も標準で可能です。

  • pandas

    578questions

    Pandasは、PythonでRにおけるデータフレームに似た型を持たせることができるライブラリです。 行列計算の負担が大幅に軽減されるため、Rで行っていた集計作業をPythonでも比較的簡単に行えます。 データ構造を変更したりデータ分析したりするときにも便利です。