質問をすることでしか得られない、回答やアドバイスがある。

15分調べてもわからないことは、質問しよう!

新規登録して質問してみよう
ただいま回答率
86.12%
Python

Pythonは、コードの読みやすさが特徴的なプログラミング言語の1つです。 強い型付け、動的型付けに対応しており、後方互換性がないバージョン2系とバージョン3系が使用されています。 商用製品の開発にも無料で使用でき、OSだけでなく仮想環境にも対応。Unicodeによる文字列操作をサポートしているため、日本語処理も標準で可能です。

受付中

SIRモデル グラフへのプロットが上手くいかず困っています

SK_
SK_

総合スコア6

Python

Pythonは、コードの読みやすさが特徴的なプログラミング言語の1つです。 強い型付け、動的型付けに対応しており、後方互換性がないバージョン2系とバージョン3系が使用されています。 商用製品の開発にも無料で使用でき、OSだけでなく仮想環境にも対応。Unicodeによる文字列操作をサポートしているため、日本語処理も標準で可能です。

0回答

0グッド

0クリップ

121閲覧

投稿2022/12/06 08:34

編集2022/12/12 04:36

前提

Pythonで通常のSIRモデルを拡張し,ネットワーク上のエージェントを対象としたモデルを作成しています.
結果のプロットが上手くいきません

実現したいこと

  • 各状態のリストの作成
  • グラフへの正しいプロット

発生している問題・エラーメッセージ

イメージ説明

空のグラフがプロットされてしまいます
状態のリストが作成されていないのでプロットされないと思っています

該当のソースコード

python

1import networkx as nx 2import random as rnd 3import numpy as np 4import matplotlib.pyplot as plt 5 6 7class Agent: 8 def __init__(self): 9 self.state = 'S' 10 self.neighbors_id = list() 11 12 13def generate_agents(num_agent, average_degree): 14 """ 15 ネットワークの作成とエージェントのリスト作成 16 """ 17 network = nx.barabasi_albert_graph(num_agent, average_degree//2) 18 agents = [Agent() for agent_id in range(num_agent)] 19 20 for agent_id, agent in enumerate(agents): 21 agent.nebghbors_id = list(network[agent_id]) 22 return agents 23 24 25def count_state_num(agents): 26 """ 27 各状態のエージェントの数 28 """ 29 num_s = len([agent for agent in agents if agent.state == 'S']) 30 num_i = len([agent for agent in agents if agent.state == 'I']) 31 num_r = len([agent for agent in agents if agent.state == 'R']) 32 33 return num_s, num_i, num_r 34 35 36""" 371. 自分はまだ健康(S状態) → 隣人の中に感染者(I状態)がいたら、感染者数に比例する確率で自分も感染してI状態に遷移。 38 感染者一人との接触による感染確率はβという値で設定。 392. 自分は既に感染していて回復待ち → 回復確率(gamma)に応じて病気から回復(R状態へ) 403. 自分は既に病気にかかった上で免疫を獲得している(R状態) → 何も起こらない。 41""" 42 43 44def initialize_state(agents, num_initial_infected_agents): 45 """ 46 初期保有者をランダムに決定 47 """ 48 possibility_id = [agent_id for agent_id, agent in enumerate(agents) if agent.state == 'S'] 49 initial_infected_agent_id = rnd.sample(possibility_id, k = num_initial_infected_agents) 50 51 for i, agent in enumerate(agents): 52 if i in initial_infected_agent_id: 53 agent.state = 'I' 54 else: 55 agent.state = 'S' 56 57def disease_spreading(agents, beta, gammma, max_iter): 58 """ 59 SIRダイナミクスの計算("I"状態のエージェントがいなくなるまで) 60 """ 61 for t in range(1, max_iter): 62 state_changeable_agents = [agent for agent in agents if agent.state in ['S', 'I']] 63 next_states = ['S' for i in range(len(state_changeable_agents))] 64 65 for i, agent in enumerate(state_changeable_agents): 66 if agent.state == 'S': 67 num_infected_neighbors = len([agents[agent_id] 68 for agent_id in agent.neighbors_id if agents[agent_id].state == 'I']) 69 if rnd.random() <= beta*num_infected_neighbors: 70 next_states[i] = 'I' 71 else: 72 pass 73 74 elif agent.state == 'I': 75 if rnd.random() <= gammma: 76 next_states[i] = 'R' 77 else: 78 next_states[i] = 'I' 79 80 # 状態の更新 81 for agent, next_state in zip(state_changeable_agents, next_states): 82 agent.state = next_state 83 84 num_s, num_i, num_r = count_state_num(agents) 85 86 if num_i == 0: 87 print('spreading finished') 88 break 89 90 return num_s, num_i, num_r 91 92 93def main(): 94 """ 95 メイン処理 96 """ 97 num_agent = 81306 # エージェントの総数 98 average_degree = 43 # 平均次数 99 max_iter = 100 # 時間の上限 100 beta = 0.05 # 感染率 101 gamma = 0.6 # 回復率 102 num_initial_infected_agents = 1 # 初期感染者数 103 agents = generate_agents(num_agent, average_degree) 104 105 initialize_state(agents, num_initial_infected_agents) 106 num_s, num_i, num_r = disease_spreading(agents, beta, gamma, max_iter) 107 108 plt.plot(max_iter, num_s, color=(0.2,0.2,0.2), linewidth=1.0, label='Susceptible') 109 plt.plot(max_iter, num_i, color=(1.0,0,0.0), linewidth=1.0, label='Infective') 110 plt.plot(max_iter, num_r, color=(0.0,1.0,0.0), linewidth=1.0, label='Removal') 111 plt.xlim(0,100) 112 plt.legend() 113 plt.xlabel('t') 114 plt.ylabel('count') 115 plt.show() 116 117 118if __name__=='__main__': 119 main()

試したこと

ウェブサイトの検索

補足情報(FW/ツールのバージョンなど)

Python, Jupyter Notebook

以下のような質問にはグッドを送りましょう

  • 質問内容が明確
  • 自分も答えを知りたい
  • 質問者以外のユーザにも役立つ

グッドが多くついた質問は、TOPページの「注目」タブのフィードに表示されやすくなります。

気になる質問をクリップする

クリップした質問は、後からいつでもマイページで確認できます。

またクリップした質問に回答があった際、通知やメールを受け取ることができます。

下記のような質問は推奨されていません。

  • 間違っている
  • 質問になっていない投稿
  • スパムや攻撃的な表現を用いた投稿

適切な質問に修正を依頼しましょう。

まだ回答がついていません

会員登録して回答してみよう

アカウントをお持ちの方は

15分調べてもわからないことは
teratailで質問しよう!

ただいまの回答率
86.12%

質問をまとめることで
思考を整理して素早く解決

テンプレート機能で
簡単に質問をまとめる

質問する

関連した質問

同じタグがついた質問を見る

Python

Pythonは、コードの読みやすさが特徴的なプログラミング言語の1つです。 強い型付け、動的型付けに対応しており、後方互換性がないバージョン2系とバージョン3系が使用されています。 商用製品の開発にも無料で使用でき、OSだけでなく仮想環境にも対応。Unicodeによる文字列操作をサポートしているため、日本語処理も標準で可能です。