回答編集履歴
1
誤字の修正
test
CHANGED
@@ -14,4 +14,4 @@
|
|
14
14
|
|
15
15
|
|
16
16
|
|
17
|
-
その特徴量と正解データ(正常/異常)をもとに、K近傍法を用いるのか、ランダムフォレストを用いるのか、GBDTを用いるのか、は、また別の議論です。K近傍法に決めつけずに、いろいろ試してみるとよいと思います。なお、書籍「Kaggleで勝つデータ分析の技術」では、GBDTをほぼ万能な基本モデルと位置付けており、**まずはGBDTを試してみることをオススメします**。なお、ここまでの話でご理解いただけると思いますが、「時系列」という要素は特徴量エンジニアリングには考慮していますが、その後のモデル検討には考慮していません。こういった問題を**「時系列機械学習」であると
|
17
|
+
その特徴量と正解データ(正常/異常)をもとに、K近傍法を用いるのか、ランダムフォレストを用いるのか、GBDTを用いるのか、は、また別の議論です。K近傍法に決めつけずに、いろいろ試してみるとよいと思います。なお、書籍「Kaggleで勝つデータ分析の技術」では、GBDTをほぼ万能な基本モデルと位置付けており、**まずはGBDTを試してみることをオススメします**。なお、ここまでの話でご理解いただけると思いますが、「時系列」という要素は特徴量エンジニアリングには考慮していますが、その後のモデル検討には考慮していません。こういった問題を**「時系列機械学習」であると決めつけて、ググったりしますと、間違った方向に進んでしまいます**ので、ご注意ください。
|